• Title/Summary/Keyword: Euler polynomials

Search Result 104, Processing Time 0.02 seconds

A NUMERICAL INVESTIGATION ON THE ZEROS OF THE TANGENT POLYNOMIALS

  • Ryoo, C.S.
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.3_4
    • /
    • pp.315-322
    • /
    • 2014
  • In this paper, we observe the behavior of complex roots of the tangent polynomials $T_n(x)$, using numerical investigation. By means of numerical experiments, we demonstrate a remarkably regular structure of the complex roots of the tangent polynomials $T_n(x)$. Finally, we give a table for the solutions of the tangent polynomials $T_n(x)$.

A NOTE ON THE TWISTED LERCH TYPE EULER ZETA FUNCTIONS

  • He, Yuan;Zhang, Wenpeng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.659-665
    • /
    • 2013
  • In this note, the $q$-extension of the twisted Lerch Euler zeta functions considered by Jang [Bull. Korean Math. Soc. 47 (2010), no. 6, 1181-1188] is further investigated, and the generalized multiplication theorem for the $q$-extension of the twisted Lerch Euler zeta functions is given. As applications, some well-known results in the references are deduced as special cases.

SOME IDENTITIES ON THE BERNSTEIN AND q-GENOCCHI POLYNOMIALS

  • Kim, Hyun-Mee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.1289-1296
    • /
    • 2013
  • Recently, T. Kim has introduced and analysed the $q$-Euler polynomials (see [3, 14, 35, 37]). By the same motivation, we will consider some interesting properties of the $q$-Genocchi polynomials. Further, we give some formulae on the Bernstein and $q$-Genocchi polynomials by using $p$-adic integral on $\mathbb{Z}_p$. From these relationships, we establish some interesting identities.

MORE EXPANSION FORMULAS FOR q, 𝜔-APOSTOL BERNOULLI AND EULER POLYNOMIALS

  • Ernst, Thomas
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.417-445
    • /
    • 2020
  • The purpose of this article is to continue the study of q, 𝜔-special functions in the spirit of Wolfgang Hahn from the previous papers by Annaby et al. and Varma et al., with emphasis on q, 𝜔-Apostol Bernoulli and Euler polynomials, Ward-𝜔 numbers and multiple q, 𝜔power sums. Like before, the q, 𝜔-module for the alphabet of q, 𝜔-real numbers plays a crucial role, as well as the q, 𝜔-rational numbers and the Ward-𝜔 numbers. There are many more formulas of this type, and the deep symmetric structure of these formulas is described in detail.