References
- Y. He and Q. Y. Liao, Some congruences invloving Euler numbers, Fibonacci Quart. 46/47 (2008/2009), 225-234.
- Y. He and W. P. Zhang, Some symmetric identities involving a sequence of polynomials, Electron. J. Combin. 17 (2010), no. 1, Note 7, 7 pp.
- Y. He and W. P. Zhang, Some sum relations involving Bernoulli and Euler polynomials, Integral Transforms Spec. Funct. 22 (2011), no. 3, 207-215. https://doi.org/10.1080/10652469.2010.511209
- L. Jang, On a q-analogue of the p-adic generalized twisted L-functions and p-adic q-integrals, J. Korean Math. Soc. 44 (2007), no. 1, 1-10. https://doi.org/10.4134/JKMS.2007.44.1.001
- L. Jang, The q-analogue of twisted Lerch type Euler zeta functions, Bull. Korean Math. Soc. 47 (2010), no. 6, 1181-1188. https://doi.org/10.4134/BKMS.2010.47.6.1181
- T. Kim, q-Volkenborn integration, Russ. J. Math. Phys. 9 (2002), no. 3, 288-299.
- T. Kim, q-generalized Euler numbers and polynomials, Russ. J. Math. Phys. 13 (2006), no. 3, 293-298. https://doi.org/10.1134/S1061920806030058
-
T. Kim, On the analogs of Euler numbers and polynomials associated with p-adic q-integral on
$\mathbb{Z}_ {p}$ at q =-1, J. Math. Anal. Appl. 331 (2007), no. 2, 779-792. https://doi.org/10.1016/j.jmaa.2006.09.027 -
T. Kim, Symmetry p-adic invariant integral on
${\mathbb{Z}}_{p}$ for Bernoulli and Euler polynomials, J. Difference Equ. Appl. 14 (2008), no. 12, 1267-1277. https://doi.org/10.1080/10236190801943220 - T. Kim, p-adic interpolating function for q-Euler numbers and its derivatives, J. Math. Anal. Appl. 339 (2008), no. 1, 598-608. https://doi.org/10.1016/j.jmaa.2007.07.027
- T. Kim, Note on the Euler q-zeta functions, J. Number Theory 129 (2009), no. 7, 1798-1804. https://doi.org/10.1016/j.jnt.2008.10.007
-
T. Kim, Some identities on the q-Euler polynomials of higher order and q-Stirling umbers by the fermionic p-adic integral on
${\mathbb{Z}}_{p}$ , Russ. J. Math. Phys. 16 (2009), no. 4, 484-491. https://doi.org/10.1134/S1061920809040037 - T. Kim, On a q-analogue of the p-adic log gamma functions and related integrals, J. Number Theory 76 (1999), no. 2, 320-329. https://doi.org/10.1006/jnth.1999.2373
- H. M. Liu and W. P. Wang, Some identities on the Bernoulli, Euler and Genocchi polynomials via power sums and alternate power sums, Discrete Math. 309 (2009), no. 10, 3346-3363. https://doi.org/10.1016/j.disc.2008.09.048
- D. Q. Lu and H. M. Srivastava, Some series identities involving the generalized Apostol type and related polynomials, Comput. Math. Appl. 62 (2011), no. 9, 3591-3602. https://doi.org/10.1016/j.camwa.2011.09.010
- H. Ozden and Y. Simsek, A new extension of q-Euler numbers and polynomials related to their interpolation functions, Appl. Math. Lett. 21 (2008), no. 9, 934-939. https://doi.org/10.1016/j.aml.2007.10.005
-
S. H. Rim and T. Kim, A note on p-adic Euler measure on
${\mathbb{Z}}_{p}$ , Russ. J. Math. Phys. 13 (2006), no. 3, 358-361. https://doi.org/10.1134/S1061920806030113 - Y. Simsek, On twisted q-Hurwitz zeta function and q-two-variable L-function, Appl. Math. Comput. 187 (2007), no. 1, 466-473. https://doi.org/10.1016/j.amc.2006.08.146
- Y. Simsek, V. Kurt, and D. Kim, New approach to the complete sum of products of the twisted (h; q)-Bernoulli numbers and polynomials, J. Nonlinear Math. Phys. 14 (2007), no. 1, 44-56. https://doi.org/10.2991/jnmp.2007.14.1.5
Cited by
- Symmetric identities for Carlitz’s q-Bernoulli numbers and polynomials vol.2013, pp.1, 2013, https://doi.org/10.1186/1687-1847-2013-246