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A NOTE ON THE TWISTED LERCH TYPE EULER ZETA

FUNCTIONS

Yuan He and Wenpeng Zhang

Abstract. In this note, the q-extension of the twisted Lerch Euler zeta
functions considered by Jang [Bull. Korean Math. Soc. 47 (2010), no.
6, 1181–1188] is further investigated, and the generalized multiplication
theorem for the q-extension of the twisted Lerch Euler zeta functions
is given. As applications, some well-known results in the references are
deduced as special cases.

1. Introduction

Throughout this paper, Zp, Qp and Cp will denote the ring of p-adic rational
integers, the field of p-adic rational numbers and the completion of the algebraic
closure of Qp, respectively. Let vp be the normalized exponential valuation of

Cp with |p|p = p−vp(p) = p−1. When one talks of q-extension, q is variously
considered as an indeterminate, a complex number q ∈ C or a p-adic number
q ∈ Cp. If q ∈ C, one normally assume |q| < 1. If q ∈ Cp, then we normally

assume |q − 1|p < p
1

1−p , so that qx = exp(x log q) for each x ∈ Zp. For
f ∈ UD(Zp,Cp) = {f | f : Zp → Cp is the uniformly differentiable function},
the p-adic q-integral (also be called as q-Volkenborn integration) is defined by
(see [6, 13])

(1.1) Iq(f) =

∫

Zp

f(x)dµq(x) = lim
N→∞

1

[pN ]q

pN−1
∑

j=0

f(j)qj

with [x]q = [x : q] = (1 − qx)/(1 − q). For some applications of the p-adic
q-integral, we infer to [4, 7, 8, 10, 12, 16, 17, 18, 19].

Recently, based on the work of Kim [11], Jang [5] investigated the twisted

q-Euler polynomials E
(−m,k)
m,q,ξ (x) of order k in the variable x in Cp given by
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(1.2) E
(−m,k)
m,q,ξ (x) =

∫

Zp

∫

Zp

· · ·

∫

Zp

[x+ x1 + · · ·+ xk]
m
q ξx1+···+xk

× q−x1(m+1)−···−xk(m+k)dµ−q(x1) · · · dµ−q(xk),

where k,m are positive integers and ξ ∈ Tp =
⋃

n≥1 Cpn is the locally con-

stant space with Cpn = {ξ | ξp
n

= 1} being the cyclic group of order pn, and
gave several explicit expressions of the twisted q-Euler polynomials of order
k by using the p-adic q-integral and some transformation techniques. In par-
ticular, he constructed a new complex q-analogue of twisted Lerch type Euler
zeta function at negative integers which interpolate the above twisted q-Euler
polynomials.

The aim of the present note is to perform a further investigation for the
q-extension of the twisted Lerch Euler zeta functions considered by Jang [5].
By using some elementary methods and techniques, we derive the generalized
multiplication theorem for the q-extension of the twisted Lerch Euler zeta func-
tions. It turns out that some well-known results, for example, Jang [5], Kim
[9], etc., are reobtained.

2. The restatement of results

We firstly recall the q-extension of the twisted Lerch Euler zeta functions
which is given by (see [5])

(2.1) ζq,E,ξ(s, x) = [2]q

∞
∑

n=0

(−1)nξnqns

[x+ n]sq
,

where q, s ∈ C with |q| < 1 and Re(s) > 1, ξ ∈ Tp and x is a positive real
number. Obviously, the case ξ = 1 in (2.1) leads to the q-extension of Hurwitz’s
type Euler zeta function due to Kim [11]. Now, let a, b be positive integers and
j be a non-negative integer. If substituting bx+ bj/a for x in (2.1), we have

(2.2) ζq,E,ξ

(

s, bx+
bj

a

)

= [2]q

∞
∑

n=0

(−1)nξnqns

[bx+ bj/a+ n]sq
.

It is easy to see that for any complex numbers x and y, [xy]q = [x]q[y]qx . Hence,
in view of replacing q by qa and ξ by ξa in (2.2), we derive

ζqa,E,ξa

(

s, bx+
bj

a

)

= [2]qa
∞
∑

n=0

(−1)nξanqans

[bx+ bj/a+ n]sqa
(2.3)

= [2]qa [a]
s
q

∞
∑

n=0

(−1)nξanqans

[abx+ bj + an]sq
.

Since for any non-negative integer n and positive integer b, there exist unique
non-negative integers r and i such that n = br + i with 0 ≤ i ≤ b − 1. So the
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above identity (2.3) can be rewritten as follows

(2.4) ζqa,E,ξa

(

s, bx+
bj

a

)

= [2]qa [a]
s
q

b−1
∑

i=0

∞
∑

n=0

(−1)bn+iξa(bn+i)qas(bn+i)

[abx+ bj + a(bn+ i)]sq
.

It follows from (2.4) that

(2.5)
[b]sq
[2]qa

a−1
∑

j=0

(−1)jξbjqbsjζqa,E,ξa

(

s, bx+
bj

a

)

= ([a]q[b]q)
s

a−1
∑

j=0

(−1)jξbjqbjs
b−1
∑

i=0

(−1)iξaiqais
∞
∑

n=0

(−1)bnξabnqabns

[ab(x+ n) + ai+ bj]sq
.

In the same way,

(2.6)
[a]sq
[2]qb

b−1
∑

j=0

(−1)jξajqasjζqb,E,ξb

(

s, ax+
aj

b

)

= ([a]q[b]q)
s

b−1
∑

j=0

(−1)jξajqajs
a−1
∑

i=0

(−1)iξbiqbis
∞
∑

n=0

(−1)anξabnqabns

[ab(x+ n) + bi+ aj]sq
.

Thus, if a and b in (2.5) and (2.6) satisfy a ≡ b (mod 2), then we immediately
obtain:

Theorem 2.1. Let s, q ∈ C with |q| < 1. Then for positive integers a and b
with the same parity,

[b]sq
[2]qa

a−1
∑

j=0

(−1)jξbjqbsjζqa,E,ξa

(

s, bx+
bj

a

)

(2.7)

=
[a]sq
[2]qb

b−1
∑

j=0

(−1)jξajqasjζqb,E,ξb

(

s, ax+
aj

b

)

.

Next, we discuss some special cases of Theorem 2.1. Setting b = 1 in Theo-
rem 2.1, we have the following distribution formula

(2.8) ζq,E,ξ(s, ax) =
[2]q

[2]qa [a]sq

a−1
∑

j=0

(−1)jξjqsjζqa,E,ξa

(

s, x+
j

a

)

.

Especially, setting a = 2 in (2.8), we have the duplication formula

(2.9) ζq,E,ξ(s, 2x) =
1

[2]q2 [2]
s−1
q

(

ζq2,E,ξ2(s, x)− ξqsζq2,E,ξ2

(

s, x+
1

2

))

.

On the other hand, since the twisted q-Euler polynomials can be expressed in
following way (see [5, Theorem 4])

(2.10) E
(−m,1)
m,q,ξ (x) = [2]q

∞
∑

n=0

(−1)nq−mnξn[x+ n]mq ,



662 YUAN HE AND WENPENG ZHANG

then by (2.1), (2.10) and the analytic continuation of ζq,E,ξ(s, x), one can easily
obtain

(2.11) E
(−m,1)
m,q,ξ (x) = ζq,E,ξ(−m,x).

In fact, using the relation

(2.12) [x+ n]mq =
1

(1− q)m

m
∑

i=0

(

m

i

)

(−1)iq(x+n)i,

the above identity (2.10) can be reduced in the following way

(2.13) E
(−m,1)
m,q,ξ (x) =

[2]q
(1 − q)m

m
∑

i=0

(

m

i

)

(−1)i
qxi

1 + ξqi−m
,

which means the symmetric distribution of the twisted q-Euler polynomials

(2.14) E
(−m,1)
m,q,ξ (x) = (−1)m+1qξE

(−m,1)
m,q−1,ξ−1(1− x).

Thus, by applying (2.11) to Theorem 2.1, we state:

Theorem 2.2. Let a, b,m be positive integers with a ≡ b (mod 2). Then

[a]mq
[2]qa

a−1
∑

j=0

(−1)jξbjq−bmjE
(−m,1)
m,qa,ξa

(

bx+
bj

a

)

(2.15)

=
[b]mq
[2]qb

b−1
∑

j=0

(−1)jξajq−amjE
(−m,1)

m,qb,ξb

(

ax+
aj

b

)

.

It follows that we show some special cases of Theorem 2.2. Setting b = 1
and replacing x by x/a in Theorem 2.2, we have the following multiplication
formula of the twisted q-Euler polynomials due to Jang (see [5, Theorem 3])

(2.16) E
(−m,1)
m,q,ξ (x) =

[2]q[a]
m
q

[2]qa

a−1
∑

j=0

(−1)jξjq−mjE
(−m,1)
m,qa,ξa

(

x+ j

a

)

(2 ∤ a).

If multiplying
∑∞

m=0 t
m/m! in both sides of (2.10), one can easily derive

∞
∑

m=0

E
(−m,1)
m,q,ξ (x)

tm

m!
= [2]q

∞
∑

n=0

(−1)nξn
∞
∑

m=0

q−mn[x+ n]mq
tm

m!
(2.17)

= [2]q

∞
∑

n=0

(−1)nξneq
−n[x+n]qt.

It follows from (2.17) that

(2.18) lim
q→1

E
(−m,1)
m,q,1 (x) = Em(x),

where En(x) denotes the classical Euler polynomials given by (see [1, 2, 3])

(2.19)
2ext

et + 1
=

∞
∑

n=0

En(x)
tn

n!
(|t| < π).
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Hence, by setting ξ = 1 and letting q → 1 in Theorem 2.2, we obtain that for
positive integers a, b and non-negative integer n,
(2.20)

an
a−1
∑

j=0

(−1)jEn

(

bx+
bj

a

)

= bn
b−1
∑

j=0

(−1)jEn

(

ax+
aj

b

)

(a ≡ b (mod 2)),

which was rediscovered by many authors; see for example [14, 9]. For the
generalization of (2.20) in other direction, see [15] for a detail introduction. If
substituting x+y for x in (2.17), then by using the relation [x+y]q = [x]q+qx[y]q
for any complex numbers x and y, we get

(2.21)

∞
∑

m=0

E
(−m,1)
m,q,ξ (x+ y)

tm

m!
= [2]q

∞
∑

n=0

(−1)nξneq
−n[y+n]qq

xteq
−n[x]qt.

Putting the exponential series ext =
∑∞

n=0 x
ntn/n! and (2.17) to (2.21), with

help of the Cauchy product, we derive
∞
∑

m=0

E
(−m,1)
m,q,ξ (x + y)

tm

m!
=

( ∞
∑

m=0

[x]mq
tm

m!

)( ∞
∑

m=0

qmxE
(−m,1)
m,q,q−mξ

(y)
tm

m!

)

(2.22)

=

∞
∑

m=0

( m
∑

i=0

(

m

i

)

qixE
(−i,1)
i,q,q−iξ

(y)[x]m−i
q

)

tm

m!
.

Hence, by comparing the coefficients of tm/m! in (2.22), we obtain the addition
theorem of the twisted q-Euler polynomials as follows

(2.23) E
(−m,1)
m,q,ξ (x+ y) =

m
∑

i=0

(

m

i

)

qixE
(−i,1)
i,q,q−iξ

(y)[x]m−i
q .

In light of applying (2.23) to Theorem 2.2, we immediately derive after some
calculation.

Theorem 2.3. Let a, b,m be positive integers with a ≡ b (mod 2). Then

[2]qb

m
∑

i=0

(

m

i

)

[a]iq[b]
m−i
q E

(−i,1)
i,qa,q−iaξa

(bx)Sm−i,ξb;qb(a)(2.24)

= [2]qa
m
∑

i=0

(

m

i

)

[b]iq[a]
m−i
q E

(−i,1)

i,qb,q−ibξb
(ax)Sm−i,ξa ;qa(b),

where Sm,ξ;q(a) =
∑a−1

j=0 (−ξ)jq−mj [j]mq .

If taking ξ = 1 and letting q → 1 in Theorem 2.3, then we have the following
identity between the classical Euler polynomials and alternating sum (see [14,
9])

(2.25)

n
∑

i=0

(

n

i

)

an−ibiEn−i(bx)Si(a) =

m
∑

i=0

(

n

i

)

bn−iaiEn−i(ax)Si(b),



664 YUAN HE AND WENPENG ZHANG

where n is a non-negative integer, a, b are positive integers with a ≡ b (mod 2)

and Sn(a) =
∑a−1

j=0 (−1)jjn. For the generalization of the above identity (2.25)

in the Apostol-type direction, the interested readers may consult to [15].
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