References
- T.M. Apostol, Modular functions and Dirichlet series in number theory, Graduate Texts in Mathematics 41, Springer-Verlag, New York, 1990.
- T.M. Apostol, Generalized Dedekind sums and transformation formulae of certain Lambert series, Duke Math. J. 17 (1950), 147-157. https://doi.org/10.1215/S0012-7094-50-01716-9
- T.M. Apostol, Theorems on generalized Dedekind sums, Pacific J. Math. 2 (1952), 1-9. https://doi.org/10.2140/pjm.1952.2.1
- A. Bayad, Arithmetical properties of elliptic Bernoulli and Euler numbers, Int. J. Algebra 4 (2010), no. 5-8, 353-372.
- L. Carlitz, Generalized Dedekind sums, Math. Z. 85 (1964), 83-90. https://doi.org/10.1007/BF01114880
- L. Carlitz, The reciprocity theorem for Dedekind sums, Pacific J. Math. 3 (1953), 523-527. https://doi.org/10.2140/pjm.1953.3.523
- L. Carlitz, Some theorems on generalized Dedekind sums, Pacific J. Math. 3 (1953), 513-522. https://doi.org/10.2140/pjm.1953.3.513
- L. Carlitz, Multiplication formulas for products of Bernoulli and Euler polynomials, Pacific J. Math. 9 (1959), 661-666. https://doi.org/10.2140/pjm.1959.9.661
- M. Cenkci, M. Can and V. Kurt, Degenerate and character Dedekind sums, J. Number Theory 124 (2007), no. 2, 346-363. https://doi.org/10.1016/j.jnt.2006.09.006
- R. Dedekind, Erlluterungen zu zwei Fragmenten von Riemamr, in "B. Riemann's Gesammelte Mathematische Werke" (H. Weber, Ed.), 2nd ed., pp. 466-472, Berlin, 1892. [Reprinted by Dover, New York, 1953.]
- S. Hu, D. Kim and M.-S. Kim, On reciprocity formula of Apostol-Dedekind sum with quasi-periodic Euler functions, J. Number Theory 162 (2016), 54-67. https://doi.org/10.1016/j.jnt.2015.10.022
- S. Hu and M.-S. Kim, The p-adic analytic Dedekind sums, J. Number Theory 171 (2017), 112-127. https://doi.org/10.1016/j.jnt.2016.07.022
-
N.S. Jung and C.S. Ryoo, A research on a new approach to Euler polynomials and Bernstein polynomials with variable
$[x]_q$ , J. Appl. Math. Inform. 35 (2017), no. 1-2, 205-215. https://doi.org/10.14317/jami.2017.205 - T. Kim, Note on Dedekind type DC sums, Adv. Stud. Contemp. Math. 18 (2009), 249-260.
- M.-S. Kim, On the special values of Tornheim's multiple series, J. Appl. Math. Inform. 33 (2015), no. 3-4, 305-315. https://doi.org/10.14317/jami.2015.305
- M. Mikolas, On certain sums generating the Dedekind sums and their reciprocity laws, Pacific J. Math. 7 (1957), 1167-1178. https://doi.org/10.2140/pjm.1957.7.1167
- H. Rademacher, Zur Theorie der Modulfunktionen, Reine Angew. Math. 167 (1931), 312-366.
- H. Rademacher, Some remarks on certain generalized Dedekind sums, Acta Arith. 9 (1964), 97-105. https://doi.org/10.4064/aa-9-1-97-105
- H. Rademacher and E. Grosswald, Dedekind sums, The Carus Mathematical Monographs, No. 16, The Mathematical Association of America, Washington, D.C., 1972.
- Y. Simsek, Special functions related to Dedekind-type DC-sums and their applications, Russ. J. Math. Phys. 17 (2010), no. 4, 495-508. https://doi.org/10.1134/S1061920810040114
- C. Snyder, p-adic interpolation of Dedekind sums, Bull. Austral. Math. Soc. 37 (1988), no. 2, 293-301. https://doi.org/10.1017/S0004972700026848
- L. Takacs, On generalized Dedekind sums, J. Number Theory 11 (1979), no. 2, 264-272. https://doi.org/10.1016/0022-314X(79)90044-1
Cited by
- ON p-ADIC EULER L-FUNCTION OF TWO VARIABLES vol.36, pp.5, 2017, https://doi.org/10.14317/jami.2018.369