A REPRESENTATION OF DEDEKIND SUMS WITH QUASI-PERIODICITY EULER FUNCTIONS ${ }^{\dagger}$

MIN-SOO KIM

Abstract

In this paper, we shall provide several properties of Dedekind sums with quasi-periodicity Euler functions. In particular, we present a representation of these Dedekind sums in terms of the Eulerian functions and the tangent functions.

AMS Mathematics Subject Classification : 11F20, 11B68. Key words and phrases : Dedekind sums, Euler polynomials, Quasiperiodicity Euler functions.

1. Introduction

Denote by

$$
((x))= \begin{cases}x-[x]-\frac{1}{2} & (x \neq \text { integer }) \tag{1}\\ 0 & (x=\text { integer })\end{cases}
$$

Here, for $x \in \mathbb{R},[x]$ denotes the greatest integer not exceeding x and $\{x\}$ denotes the fractional part of real number x, thus

$$
\begin{equation*}
\{x\}=x-[x] . \tag{2}
\end{equation*}
$$

If h, k are coprime integers, then the classical Dedekind sum $s(h, k)$ is defined by

$$
\begin{equation*}
s(h, k)=\sum_{\mu=0}^{k-1}\left(\left(\frac{h \mu}{k}\right)\right)\left(\left(\frac{\mu}{k}\right)\right) . \tag{3}
\end{equation*}
$$

This sum was introduced by Dedekind [10] in 1892. From the transformation formula of Dedekind η-functions, he deduced the following reciprocity theorem

$$
\begin{equation*}
12 h k\{s(h, k)+s(k, h)\}=h^{2}-3 h k+k^{2}+1 \tag{4}
\end{equation*}
$$

(see [1, p. 62, Theorem 3.7]). There are several generalizations of the classical Dedekind sum $s(h, k)$, some of them also satisfy reciprocity formulas, see $[2,3$,
$4,5,6,8,9,14,18,20,21,22]$ and the references therein. The first proof of (4) which doesn't employ the theory of Dedekind η-functions is due to Rademacher [17]. And a three term version of (1.3) was discussed by Rademacher in [18].

In [16], Mikolas obtained the reciprocity theorem for

$$
\begin{equation*}
S_{m, n}\binom{a b}{c}=\sum_{k=0}^{c-1} \bar{B}_{m}\left(\frac{k a}{c}\right) \bar{B}_{n}\left(\frac{k b}{c}\right) \tag{5}
\end{equation*}
$$

where $m, n=0,1,2, \ldots$, and $(a, c)=(b, c)=1, c>0$. He established a large number of beautiful identities involving these sums. Here $\bar{B}_{n}(x)$ denotes the n-th Bernoulli function defined through the following Fourier expansions:

$$
\begin{equation*}
\bar{B}_{n}(x)=B_{n}(x-[x])=-\frac{n!}{(2 \pi i)^{n}} \sum_{k=-\infty, k \neq 0}^{\infty} \frac{e^{2 \pi i k x}}{k^{n}} \tag{6}
\end{equation*}
$$

for all real x if $n \geq 1$, and for $x \neq$ integer if $n=1$, where $B_{n}(x)$ is the n-th Bernoulli polynomial. Note that, for $x \neq$ integer, $\bar{B}_{1}(x)=((x))$.

Let $\bar{E}_{n}(x)$ be the n-th quasi-periodicity Euler function defined by [8, p. 661]

$$
\begin{equation*}
\bar{E}_{n}(x)=E_{n}(x)(0 \leq x<1), \quad \bar{E}_{n}(x+1)=-\bar{E}_{n}(x), \tag{7}
\end{equation*}
$$

where $E_{n}(x)$ denotes the Euler polynomials (see $[8,13,15]$). Thus for $x \in \mathbb{R}$ and $r \in \mathbb{Z}$, we have

$$
\begin{equation*}
\bar{E}_{n}(x)=(-1)^{[x]} \bar{E}_{n}(\{x\}), \quad \bar{E}_{n}(x+r)=(-1)^{r} \bar{E}_{n}(x) \tag{8}
\end{equation*}
$$

The n-th Euler function $\bar{E}_{n}(x)$ has the following Fourier expansions (comparing with (6) above)

$$
\begin{equation*}
\bar{E}_{n}(x)=\frac{4 n!}{\pi^{n+1}} \sum_{k=0}^{\infty} \frac{\sin \left((2 k+1) \pi x-\frac{1}{2} \pi n\right)}{(2 k+1)^{n+1}} \tag{9}
\end{equation*}
$$

where $0 \leq x \leq 1$ if $n \in \mathbb{N}$ and $0<x<1$ if $n=0$ (see [11, Lemma 2.1] and [20, Lemma 5]).

In this paper, we study a type of Dedekind sums analogue with (5) which is associated with the above quasi-periodic Euler functions. That is, in analogue with (5), we consider the following sums

$$
\begin{equation*}
T_{m, n}\binom{a}{c}=\sum_{k=0}^{c-1}(-1)^{k} \bar{E}_{m}\left(\frac{k a}{c}\right) \bar{E}_{n}\left(\frac{k b}{c}\right) \tag{10}
\end{equation*}
$$

where $m, n=0,1,2, \ldots$ with $(a, c)=(b, c)=1, c>0$ and $\bar{E}_{n}(x)$ is the n-th quasi-periodicity Euler function. We investigate their properties, and in particular we give a representation of these Dedekind sums in terms of the Eulerian functions and the tangent functions. It needs to mention that in 2016 Hu et al. [11] studied (10) in the case $n=b=1$, and in 2017 Hu and Kim [12, Sec. 3] considered (10) under the p-adic situation where $b=1$ and m replacing with $m-n+1$.

2. Results

In what follows, x, y, z denote complex variables. We also denote

$$
e(z)=e^{2 \pi i z} .
$$

Suppose $a, b, c \in \mathbb{Z}$ and $c>0$. Put

$$
\begin{equation*}
T_{c}^{a, b}(x, y)=\sum_{k=0}^{c-1}(-1)^{k+\left[\frac{k a}{c}\right]+\left[\frac{k b}{c}\right]} e\left(\left\{\frac{k a}{c}\right\} x+\left\{\frac{k b}{c}\right\} y\right) \tag{11}
\end{equation*}
$$

with $(a, c)=(b, c)=1$. If c is odd and a, b have different parities, then this summation may extend over a complete residue system modulo c, and it is easy to see that

$$
T_{c}^{a, b}(x, y)=T_{c}^{b, a}(y, x) .
$$

Proposition 2.1. Let $a, b, c \in \mathbb{Z}$ and $(a, c)=(b, c)=1$. Then we have

$$
T_{c}^{-a, b}(x, y)+e(x) T_{c}^{a, b}(-x, y)=1+e(x)
$$

Proof. It is easily seen from (2) that

$$
\{-u\}= \begin{cases}0 & \text { if } u \in \mathbb{Z} \tag{12}\\ 1-\{u\} & \text { if } u \notin \mathbb{Z}\end{cases}
$$

and

$$
[u]+[-u]= \begin{cases}0 & \text { if } u \in \mathbb{Z} \tag{13}\\ -1 & \text { if } u \notin \mathbb{Z}\end{cases}
$$

By (11), (12) and (13) we may write

$$
\begin{aligned}
T_{c}^{-a, b}(x, y) & =\sum_{k=0}^{c-1}(-1)^{k+\left[-\frac{k a}{c}\right]+\left[\frac{k b}{c}\right]} e\left(\left\{-\frac{k a}{c}\right\} x+\left\{\frac{k b}{c}\right\} y\right) \\
& =1+\sum_{k=1}^{c-1}(-1)^{k+1+\left[\frac{k a}{c}\right]+\left[\frac{k b}{c}\right]} e\left(\left(1-\left\{\frac{k a}{c}\right\}\right) x+\left\{\frac{k b}{c}\right\} y\right) \\
& =1-e(x) \sum_{k=1}^{c-1}(-1)^{k+\left[\frac{k a}{c}\right]+\left[\frac{k b}{c}\right]} e\left(\left\{\frac{k a}{c}\right\}(-x)+\left\{\frac{k b}{c}\right\} y\right) \\
& =1+e(x)-e(x) T_{c}^{a, b}(-x, y) .
\end{aligned}
$$

This completes the proof.
Define an auxiliary function

$$
\begin{equation*}
\mathfrak{F}_{c}^{a, b}(x, y)=[e(x)+1]^{-1}[e(y)+1]^{-1} T_{c}^{a, b}(x, y), \tag{14}
\end{equation*}
$$

where $x, y \neq \pm \frac{1}{2}, \pm \frac{3}{2}, \ldots$. This function $\mathfrak{F}_{c}^{a, b}(x, y)$ has some trivial properties in analogue with its classical counterparts. For example, Proposition 2.1 implies

$$
\begin{equation*}
\mathfrak{F}_{c}^{-a, b}(x, y)+\mathfrak{F}_{c}^{a, b}(-x, y)=[e(y)+1]^{-1} . \tag{15}
\end{equation*}
$$

The relationship between $\mathfrak{F}_{c}^{a, b}$ and $T_{m, n}\binom{a}{c}$ is indicated by the following proposition.

Proposition 2.2. Let $a, b, c \in \mathbb{Z}$ and $(a, c)=(b, c)=1$. Then we have

$$
\mathfrak{F}_{c}^{a, b}\left(\frac{x}{2 \pi i}, \frac{y}{2 \pi i}\right)=\frac{1}{4} \sum_{m, n=0}^{\infty} T_{m, n}\binom{a b}{c} \frac{x^{m} y^{n}}{m!n!}
$$

Proof. In (14), replacing x by $x / 2 \pi i$ and y by $y / 2 \pi i$, from (8), (2), (10) and (11), we have

$$
\begin{aligned}
\mathfrak{F}_{c}^{a, b}\left(\frac{x}{2 \pi i}, \frac{y}{2 \pi i}\right) & =\frac{1}{4} \sum_{k=0}^{c-1}(-1)^{k+\left[\frac{k a}{c}\right]+\left[\frac{k b}{c}\right]} \frac{2 e^{\left\{\frac{k a}{c}\right\} x}}{e^{x}+1} \frac{2 e^{\left\{\frac{k b}{c}\right\} x}}{e^{y}+1} \\
& =\frac{1}{4} \sum_{m, n=0}^{\infty} \frac{x^{m} y^{n}}{m!n!} \sum_{k=0}^{c-1}(-1)^{k+\left[\frac{k a}{c}\right]+\left[\frac{k b}{c}\right]} \bar{E}_{m}\left(\left\{\frac{k a}{c}\right\}\right) \bar{E}_{n}\left(\left\{\frac{k b}{c}\right\}\right) \\
& =\frac{1}{4} \sum_{m, n=0}^{\infty} T_{m, n}\binom{a b}{c} \frac{x^{m} y^{n}}{m!n!} .
\end{aligned}
$$

This completes the proof.
Theorem 2.3. Let $a, b, c \in \mathbb{Z}$ and $(a, c)=(b, c)=1$. If c is a positive odd integer and a, b have different parities, then we have
$T_{c}^{a, b}(x, y)=\frac{1}{c}[e(x)+1][e(y)+1] \sum_{r=0}^{c-1}\left[e\left(\frac{x-b r}{c}\right)+1\right]^{-1}\left[e\left(\frac{y+a r}{c}\right)+1\right]^{-1}$.
By (14), the following corollary is an immediate consequence of the above theorem.

Corollary 2.4. If c is a positive odd integer and a, b have different parities, then we have

$$
\mathfrak{F}_{c}^{a, b}(x, y)=\frac{1}{c} \sum_{r=0}^{c-1}\left[e\left(\frac{x-b r}{c}\right)+1\right]^{-1}\left[e\left(\frac{y+a r}{c}\right)+1\right]^{-1}
$$

where $a, b, c \in \mathbb{Z}$ and $(a, c)=(b, c)=1$.
Note that (see [19, p. 18, Lemma 3])

$$
\begin{equation*}
\sum_{h=0}^{c-1} \cot \pi\left(z+\frac{h}{c}\right)=c \cot \pi(c z) \tag{16}
\end{equation*}
$$

where z is not an integer. Since $\cot z=-\tan (z-\pi / 2)$, from (16), we have

$$
\begin{equation*}
\sum_{h=0}^{c-1} \tan \pi\left(z+\frac{h}{c}\right)=c \tan \pi\left(c z+\frac{c}{2}-\frac{1}{2}\right) \tag{17}
\end{equation*}
$$

It is clear from the definition that

$$
\begin{equation*}
[1+e(z)]^{-1}=\frac{1}{2}(1-i \tan \pi z) \tag{18}
\end{equation*}
$$

thus by Corollary 2.4, (17) and (18), we obtain the following result.
Corollary 2.5. If c is a positive odd integer and a, b have different parities, then we have

$$
\begin{aligned}
\mathfrak{F}_{c}^{a, b}(x, y)= & \frac{1}{4}\left[1-i\left(\tan \pi\left(y+\frac{c}{2}-\frac{1}{2}\right)+\tan \pi\left(x-\frac{c}{2}+\frac{1}{2}\right)\right)\right] \\
& -\frac{1}{4 c} \sum_{r=0}^{c-1} \tan \pi\left(\frac{x-b r}{c}\right) \tan \pi\left(\frac{y+a r}{c}\right),
\end{aligned}
$$

where $a, b, c \in \mathbb{Z}$ and $(a, c)=(b, c)=1$.
Proof of the Theorem 2.3. Let c be a positive odd integer. It is easy to see that

$$
\begin{align*}
& \sum_{j=0}^{c-1}(-1)^{j} e\left(\frac{j x}{c}\right)=[e(x)+1]\left[e\left(\frac{x}{c}\right)+1\right]^{-1}, \\
& \sum_{j=0}^{c-1}(-1)^{j} e\left(\frac{j x}{c}\right) e\left(\frac{j}{c}\right)=[e(x)+1]\left[e\left(\frac{x+1}{c}\right)+1\right]^{-1}, \tag{19}\\
& \vdots \\
& \sum_{j=0}^{c-1}(-1)^{j} e\left(\frac{j x}{c}\right) e\left(\frac{j(c-1)}{c}\right)=[e(x)+1]\left[e\left(\frac{x+c-1}{c}\right)+1\right]^{-1} .
\end{align*}
$$

For fixed $h=0,1, \ldots, c-1$, multiplying (19) by $e\left(-\frac{h j}{c}\right)$ for each $j=0,1, \ldots, c-$ 1, we have

$$
\begin{align*}
& \left.\begin{array}{c}
\sum_{j=0}^{c-1}(-1)^{j} e\left(\frac{j x}{c}\right) e\left(-\frac{0 h}{c}\right)=[e(x)+1]\left[e\left(\frac{x}{c}\right)+1\right]^{-1} e\left(-\frac{0 h}{c}\right), \\
\begin{array}{c}
\sum_{j=0}^{c-1}(-1)^{j} e\left(\frac{j x}{c}\right) e\left(\frac{j}{c}\right) e\left(-\frac{1 h}{c}\right) \\
\\
=[e(x)+1]\left[e\left(\frac{x+1}{c}\right)+1\right]^{-1} e\left(-\frac{1 h}{c}\right), \\
\vdots \\
\sum_{j=0}^{c-1}(-1)^{j} e\left(\frac{j x}{c}\right) e\left(\frac{j(c-1)}{c}\right) e\left(-\frac{(c-1) h}{c}\right) \\
\\
=[e(x)+1]\left[e\left(\frac{x+c-1}{c}\right)+1\right]^{-1} e\left(-\frac{(c-1) h}{c}\right) .
\end{array}
\end{array} . \begin{array}{l}
\end{array}\right]
\end{align*}
$$

Summing both sides of (20), we get

$$
\begin{align*}
& \sum_{j=0}^{c-1} e\left(-\frac{j h}{c}\right)+(-1)^{1} e\left(\frac{x}{c}\right) \sum_{j=0}^{c-1} e\left(\frac{j(1-h)}{c}\right) \\
& +(-1)^{2} e\left(\frac{2 x}{c}\right) \sum_{j=0}^{c-1} e\left(\frac{j(2-h)}{c}\right) \\
& +\cdots+(-1)^{h-1} e\left(\frac{(h-1) x}{c}\right) \sum_{j=0}^{c-1} e\left(\frac{j(h-1-h)}{c}\right) \\
& +(-1)^{h} e\left(\frac{h x}{c}\right) \sum_{j=0}^{c-1} 1+(-1)^{h+1} e\left(\frac{(h+1) x}{c}\right) \sum_{j=0}^{c-1} e\left(\frac{j(h+1-h)}{c}\right) \tag{21}\\
& +\cdots+(-1)^{c-1} e\left(\frac{(c-1) x}{c}\right) \sum_{j=0}^{c-1} e\left(\frac{j(c-1-h)}{c}\right) \\
& =[e(x)+1] \sum_{j=0}^{c-1}\left[e\left(\frac{x+j}{c}\right)+1\right]^{-1} e\left(-\frac{h j}{c}\right) .
\end{align*}
$$

Since

$$
\sum_{r(\bmod c)} e\left(\frac{r(m-\alpha)}{c}\right)=\left\{\begin{array}{lll}
c & \text { if } m \equiv \alpha & (\bmod c) \\
0 & \text { if } m \not \equiv \alpha & (\bmod c)
\end{array}\right.
$$

the left-hand side of (21) gives

$$
(-1)^{h} c e\left(\frac{h x}{c}\right)
$$

Thus

$$
\begin{equation*}
e\left(\frac{h x}{c}\right)=(-1)^{h} \frac{1}{c}[e(x)+1] \sum_{j=0}^{c-1}\left[e\left(\frac{x+j}{c}\right)+1\right]^{-1} e\left(-\frac{h j}{c}\right) \tag{22}
\end{equation*}
$$

where $h=0,1, \ldots, c-1$ and c is a positive odd integer.
Letting $\frac{h}{c}=\left\{\frac{a k}{c}\right\}$ with (a, c) $=1$ in (22), we have

$$
\begin{equation*}
e\left(\left\{\frac{a k}{c}\right\} x\right)=(-1)^{a k+\left[\frac{a k}{c}\right]} \frac{1}{c}[e(x)+1] \sum_{j=0}^{c-1}\left[e\left(\frac{x+j}{c}\right)+1\right]^{-1} e\left(-j \frac{a k}{c}\right) \tag{23}
\end{equation*}
$$

where we have used the equality $-\frac{h j}{c}=-j\left\{\frac{a k}{c}\right\}=-j \frac{a k}{c}+j\left[\frac{a k}{c}\right]$ and the fact that $(-1)^{h}=(-1)^{c\left\{\frac{a k}{c}\right\}}=(-1)^{c\left(\frac{a k}{c}-\left[\frac{a k}{c}\right]\right)}=(-1)^{a k+\left[\frac{a k}{c}\right]}$ in the case c is a positive odd integer. Similarly, putting $\frac{h}{c}=\left\{\frac{b k}{c}\right\}$ with $(b, c)=1$ and replacing
x by y in (22), we get

$$
\begin{equation*}
e\left(\left\{\frac{b k}{c}\right\} y\right)=(-1)^{b k+\left[\frac{b k}{c}\right]} \frac{1}{c}[e(y)+1] \sum_{j=0}^{c-1}\left[e\left(\frac{y+j}{c}\right)+1\right]^{-1} e\left(-j \frac{b k}{c}\right) . \tag{24}
\end{equation*}
$$

Then, from (23) and (24), we have

$$
\begin{aligned}
T_{c}^{a, b}(x, y)= & \sum_{k=0}^{c-1}(-1)^{k+\left[\frac{k a}{c}\right]+\left[\frac{k b}{c}\right]} e\left(\left\{\frac{k a}{c}\right\} x+\left\{\frac{k b}{c}\right\} y\right) \\
= & \frac{1}{c^{2}}[e(x)+1][e(y)+1] \\
& \times \sum_{p, q(\bmod c)}\left[e\left(\frac{x+p}{c}\right)+1\right]^{-1}\left[e\left(\frac{y+q}{c}\right)+1\right]^{-1} \\
& \times \sum_{k=0}^{c-1}(-1)^{k(a+b+1)} e\left(-\frac{k(a p+b q)}{c}\right) .
\end{aligned}
$$

Suppose a and b have different parities. If we consider the complete residue systems $(\bmod c): p=-b r, q=a \rho(r, \rho=0,1, \ldots, c-1)$ and take into account that

$$
\sum_{k=0}^{c-1}(-1)^{k(a+b+1)} e\left(-\frac{k(a p+b q)}{c}\right)=\sum_{k=0}^{c-1} e\left(-k \frac{a b(\rho-r)}{c}\right)
$$

vanishes except for $\rho=r$ when it has value c, then we have
$T_{c}^{a, b}(x, y)=\frac{1}{c}[e(x)+1][e(y)+1] \sum_{r=0}^{c-1}\left[e\left(\frac{x-b r}{c}\right)+1\right]^{-1}\left[e\left(\frac{y+a r}{c}\right)+1\right]^{-1}$.
This completes the proof.
Theorem 2.6. Let $a, b, c \in \mathbb{Z}$ and $(a, c)=(b, c)=1$. If c is a positive odd integer and a, b have different parities, then we have

$$
T_{m, n}\binom{a b}{c}=\frac{1}{c^{m+n+1}}\left[E_{m}(0) E_{n}(0)+4 \sum_{r=1}^{c-1} \frac{H_{m}\left(-\eta^{b r}\right) H_{n}\left(-\eta^{-a r}\right)}{\left(1+\eta^{-b r}\right)\left(1+\eta^{a r}\right)}\right]
$$

where $m, n=0,1,2, \ldots$ and the Eulerian numbers $H_{n}\left(\eta^{k}\right)$ defined for a root of unity $\eta^{k}=e\left(\frac{k}{c}\right), c>1, c \nmid k$ is given by the following generating function

$$
\begin{equation*}
\frac{1-\eta^{k}}{e^{z}-\eta^{k}}=\sum_{n=0}^{\infty} H_{n}\left(\eta^{k}\right) \frac{z^{n}}{n!}, \quad|z|<2 \pi\left\{\frac{k}{c}\right\} . \tag{25}
\end{equation*}
$$

Remark 2.1. In [7, (6.5)], Carlitz proved a similar result using different methods.

Proof of the Theorem 2.6. If replacing $\frac{x}{2 \pi i}$ by x and $\frac{y}{2 \pi i}$ by y in Corollary 2.4, then from usual simplifications, we find that

$$
\begin{equation*}
\mathfrak{F}_{c}^{a, b}\left(\frac{x}{2 \pi i}, \frac{y}{2 \pi i}\right)=\frac{1}{c} \sum_{r=0}^{c-1} \frac{1}{\eta^{-b r} e^{\frac{x}{c}}+1} \frac{1}{\eta^{a r} e^{\frac{y}{c}}+1} \tag{26}
\end{equation*}
$$

By expanding the right-hand side of (26), we obtain

$$
\begin{align*}
\mathfrak{F}_{c}^{a, b}\left(\frac{x}{2 \pi i}, \frac{y}{2 \pi i}\right)= & \frac{1}{c} \frac{1}{e^{\frac{x}{c}}+1} \frac{1}{e^{\frac{y}{c}}+1}+\frac{1}{c} \sum_{r=1}^{c-1} \frac{\eta^{b r}}{e^{\frac{x}{c}}+\eta^{b r}} \frac{\eta^{-a r}}{e^{\frac{y}{c}}+\eta^{-a r}} \\
= & \frac{1}{4 c} \frac{2}{e^{\frac{x}{c}}+1} \frac{2}{e^{\frac{y}{c}}+1} \\
& +\frac{1}{c} \sum_{r=1}^{c-1} \frac{1}{1+\eta^{a r}} \frac{1}{1+\eta^{-b r}} \frac{1+\eta^{b r}}{e^{\frac{x}{c}}+\eta^{b r}} \frac{1+\eta^{-a r}}{e^{\frac{y}{c}}+\eta^{-a r}} \tag{27}\\
= & \sum_{m, n=0}^{\infty} \frac{x^{n} y^{n}}{m!n!} \frac{1}{c^{m+n+1}}\left[\frac{E_{m}(0) E_{n}(0)}{4}\right. \\
& \left.+\sum_{r=1}^{c-1} \frac{H_{m}\left(-\eta^{b r}\right) H_{n}\left(-\eta^{-a r}\right)}{\left(1+\eta^{-b r}\right)\left(1+\eta^{a r}\right)}\right]
\end{align*}
$$

Finally comparing the above equality with Proposition 2.2, we have

$$
\frac{1}{4} T_{m, n}\left(\begin{array}{c}
a \tag{28}\\
c \\
c
\end{array}\right)=\frac{1}{c^{m+n+1}}\left[\frac{E_{m}(0) E_{n}(0)}{4}+\sum_{r=1}^{c-1} \frac{H_{m}\left(-\eta^{b r}\right) H_{n}\left(-\eta^{-a r}\right)}{\left(1+\eta^{-b r}\right)\left(1+\eta^{a r}\right)}\right]
$$

where $m, n=0,1, \ldots$.
Remark 2.2. If m and n have different parities with $m, n>0$, then $E_{m}(0) E_{n}(0)=$ 0 , and Theorem 2.6 reduces to the following relation:

$$
T_{m, n}\binom{a b}{c}=\frac{4}{c^{m+n+1}} \sum_{r=1}^{c-1} \frac{H_{m}\left(-\eta^{b r}\right) H_{n}\left(-\eta^{-a r}\right)}{\left(1+\eta^{-b r}\right)\left(1+\eta^{a r}\right)} .
$$

In particular, for $m=n=1$ Theorem 2.6 becomes

$$
T_{1,1}\binom{a b}{c}=\frac{1}{4 c^{3}}+\frac{1}{c^{3}} \sum_{r=1}^{c-1} \frac{\eta^{(a-b) r}}{\left(1+\eta^{a r}\right)^{2}\left(1+\eta^{-b r}\right)^{2}}
$$

A similar result for Bernoulli numbers has been discussed by Mikolas [16, (3.8)].

Acknowledgement

The author would like to thank Dr . Su Hu for helpful comments and suggestions.

References

1. T.M. Apostol, Modular functions and Dirichlet series in number theory, Graduate Texts in Mathematics 41, Springer-Verlag, New York, 1990.
2. T.M. Apostol, Generalized Dedekind sums and transformation formulae of certain Lambert series, Duke Math. J. 17 (1950), 147-157.
3. T.M. Apostol, Theorems on generalized Dedekind sums, Pacific J. Math. 2 (1952), 1-9.
4. A. Bayad, Arithmetical properties of elliptic Bernoulli and Euler numbers, Int. J. Algebra 4 (2010), no. 5-8, 353-372.
5. L. Carlitz, Generalized Dedekind sums, Math. Z. 85 (1964), 83-90.
6. L. Carlitz, The reciprocity theorem for Dedekind sums, Pacific J. Math. 3 (1953), 523-527.
7. L. Carlitz, Some theorems on generalized Dedekind sums, Pacific J. Math. 3 (1953), 513522.
8. L. Carlitz, Multiplication formulas for products of Bernoulli and Euler polynomials, Pacific J. Math. 9 (1959), 661-666.
9. M. Cenkci, M. Can and V. Kurt, Degenerate and character Dedekind sums, J. Number Theory 124 (2007), no. 2, 346-363.
10. R. Dedekind, Erlluterungen zu zwei Fragmenten von Riemamr, in "B. Riemann's Gesammelte Mathematische Werke" (H. Weber, Ed.), 2nd ed., pp. 466-472, Berlin, 1892. [Reprinted by Dover, New York, 1953.]
11. S. Hu, D. Kim and M.-S. Kim, On reciprocity formula of Apostol-Dedekind sum with quasi-periodic Euler functions, J. Number Theory 162 (2016), 54-67.
12. S. Hu and M.-S. Kim, The p-adic analytic Dedekind sums, J. Number Theory 171 (2017), 112-127.
13. N.S. Jung and C.S. Ryoo, A research on a new approach to Euler polynomials and Bernstein polynomials with variable $[x]_{q}$, J. Appl. Math. Inform. 35 (2017), no. 1-2, 205-215.
14. T. Kim, Note on Dedekind type DC sums, Adv. Stud. Contemp. Math. 18 (2009), 249-260.
15. M.-S. Kim, On the special values of Tornheim's multiple series, J. Appl. Math. Inform. 33 (2015), no. 3-4, 305-315.
16. M. Mikolas, On certain sums generating the Dedekind sums and their reciprocity laws, Pacific J. Math. 7 (1957), 1167-1178.
17. H. Rademacher, Zur Theorie der Modulfunktionen, Reine Angew. Math. 167 (1931), 312366.
18. H. Rademacher, Some remarks on certain generalized Dedekind sums, Acta Arith. 9 (1964), 97-105.
19. H. Rademacher and E. Grosswald, Dedekind sums, The Carus Mathematical Monographs, No. 16, The Mathematical Association of America, Washington, D.C., 1972.
20. Y. Simsek, Special functions related to Dedekind-type DC-sums and their applications, Russ. J. Math. Phys. 17 (2010), no. 4, 495-508.
21. C. Snyder, p-adic interpolation of Dedekind sums, Bull. Austral. Math. Soc. 37 (1988), no. 2, 293-301.
22. L. Takács, On generalized Dedekind sums, J. Number Theory 11 (1979), no. 2, 264-272.

Min-Soo Kim received Ph.D. degree from Kyungnam University. His main research area is analytic number theory. Recently, his main interests focus on p-adic analysis and zeta functions, Bernoulli and Euler numbers and polynomials.
Division of Mathematics, Science, and Computers, Kyungnam University, 7(Woryeongdong) kyungnamdaehak-ro, Masanhappo-gu, Changwon-si, Gyeongsangnam-do 51767, Korea
e-mail: mskim@kyungnam.ac.kr

