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A REPRESENTATION OF DEDEKIND SUMS WITH

QUASI-PERIODICITY EULER FUNCTIONS†
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Abstract. In this paper, we shall provide several properties of Dedekind
sums with quasi-periodicity Euler functions. In particular, we present a

representation of these Dedekind sums in terms of the Eulerian functions
and the tangent functions.
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1. Introduction

Denote by

((x)) =

{
x− [x]− 1

2 (x ̸= integer)

0 (x = integer).
(1)

Here, for x ∈ R, [x] denotes the greatest integer not exceeding x and {x} denotes
the fractional part of real number x, thus

{x} = x− [x]. (2)

If h, k are coprime integers, then the classical Dedekind sum s(h, k) is defined
by

s(h, k) =
k−1∑
µ=0

((
hµ

k

))((
µ

k

))
. (3)

This sum was introduced by Dedekind [10] in 1892. From the transformation
formula of Dedekind η-functions, he deduced the following reciprocity theorem

12hk{s(h, k) + s(k, h)} = h2 − 3hk + k2 + 1 (4)

(see [1, p. 62, Theorem 3.7]). There are several generalizations of the classical
Dedekind sum s(h, k), some of them also satisfy reciprocity formulas, see [2, 3,
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4, 5, 6, 8, 9, 14, 18, 20, 21, 22] and the references therein. The first proof of (4)
which doesn’t employ the theory of Dedekind η-functions is due to Rademacher
[17]. And a three term version of (1.3) was discussed by Rademacher in [18].

In [16], Mikolas obtained the reciprocity theorem for

Sm,n

(
a b

c

)
=

c−1∑
k=0

Bm

(
ka

c

)
Bn

(
kb

c

)
, (5)

where m,n = 0, 1, 2, . . . , and (a, c) = (b, c) = 1, c > 0. He established a large
number of beautiful identities involving these sums. Here Bn(x) denotes the
n-th Bernoulli function defined through the following Fourier expansions:

Bn(x) = Bn(x− [x]) = − n!

(2πi)n

∞∑
k=−∞,k ̸=0

e2πikx

kn
(6)

for all real x if n ≥ 1, and for x ̸= integer if n = 1, where Bn(x) is the n-th
Bernoulli polynomial. Note that, for x ̸= integer, B1(x) = ((x)).

Let En(x) be the n-th quasi-periodicity Euler function defined by [8, p. 661]

En(x) = En(x) (0 ≤ x < 1), En(x+ 1) = −En(x), (7)

where En(x) denotes the Euler polynomials (see [8, 13, 15]). Thus for x ∈ R
and r ∈ Z, we have

En(x) = (−1)[x]En({x}), En(x+ r) = (−1)rEn(x). (8)

The n-th Euler function En(x) has the following Fourier expansions (comparing
with (6) above)

En(x) =
4n!

πn+1

∞∑
k=0

sin((2k + 1)πx− 1
2πn)

(2k + 1)n+1
, (9)

where 0 ≤ x ≤ 1 if n ∈ N and 0 < x < 1 if n = 0 (see [11, Lemma 2.1] and [20,
Lemma 5]).

In this paper, we study a type of Dedekind sums analogue with (5) which is
associated with the above quasi-periodic Euler functions. That is, in analogue
with (5), we consider the following sums

Tm,n

(
a b

c

)
=

c−1∑
k=0

(−1)kEm

(
ka

c

)
En

(
kb

c

)
, (10)

where m,n = 0, 1, 2, . . . with (a, c) = (b, c) = 1, c > 0 and En(x) is the n-th
quasi-periodicity Euler function. We investigate their properties, and in partic-
ular we give a representation of these Dedekind sums in terms of the Eulerian
functions and the tangent functions. It needs to mention that in 2016 Hu et al.
[11] studied (10) in the case n = b = 1, and in 2017 Hu and Kim [12, Sec. 3]
considered (10) under the p-adic situation where b = 1 and m replacing with
m− n+ 1 .
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2. Results

In what follows, x, y, z denote complex variables. We also denote

e(z) = e2πiz.

Suppose a, b, c ∈ Z and c > 0. Put

T a,bc (x, y) =
c−1∑
k=0

(−1)k+[
ka
c ]+[

kb
c ]e

({
ka

c

}
x+

{
kb

c

}
y

)
(11)

with (a, c) = (b, c) = 1. If c is odd and a, b have different parities, then this
summation may extend over a complete residue system modulo c, and it is easy
to see that

T a,bc (x, y) = T b,ac (y, x).

Proposition 2.1. Let a, b, c ∈ Z and (a, c) = (b, c) = 1. Then we have

T−a,b
c (x, y) + e (x)T a,bc (−x, y) = 1 + e (x) .

Proof. It is easily seen from (2) that

{−u} =

{
0 if u ∈ Z,
1− {u} if u ̸∈ Z

(12)

and

[u] + [−u] =

{
0 if u ∈ Z,
−1 if u ̸∈ Z.

(13)

By (11), (12) and (13) we may write

T−a,b
c (x, y) =

c−1∑
k=0

(−1)k+[−
ka
c ]+[

kb
c ]e

({
−ka
c

}
x+

{
kb

c

}
y

)

= 1 +
c−1∑
k=1

(−1)k+1+[ ka
c ]+[

kb
c ]e

((
1−

{
ka

c

})
x+

{
kb

c

}
y

)

= 1− e(x)

c−1∑
k=1

(−1)k+[
ka
c ]+[

kb
c ]e

({
ka

c

}
(−x) +

{
kb

c

}
y

)
= 1 + e (x)− e (x)T a,bc (−x, y).

This completes the proof. �

Define an auxiliary function

Fa,bc (x, y) = [e (x) + 1]
−1

[e (y) + 1]
−1
T a,bc (x, y), (14)

where x, y ̸= ± 1
2 ,±

3
2 , . . . . This function Fa,bc (x, y) has some trivial properties in

analogue with its classical counterparts. For example, Proposition 2.1 implies

F−a,b
c (x, y) + Fa,bc (−x, y) = [e (y) + 1]

−1
. (15)
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The relationship between Fa,bc and Tm,n
(
a b
c

)
is indicated by the following

proposition.

Proposition 2.2. Let a, b, c ∈ Z and (a, c) = (b, c) = 1. Then we have

Fa,bc

( x

2πi
,
y

2πi

)
=

1

4

∞∑
m,n=0

Tm,n

(
a b

c

)
xmyn

m!n!
.

Proof. In (14), replacing x by x/2πi and y by y/2πi, from (8), (2), (10) and
(11), we have

Fa,bc

( x

2πi
,
y

2πi

)
=

1

4

c−1∑
k=0

(−1)k+[
ka
c ]+[

kb
c ] 2e

{ ka
c }x

ex + 1

2e{
kb
c }x

ey + 1

=
1

4

∞∑
m,n=0

xmyn

m!n!

c−1∑
k=0

(−1)k+[
ka
c ]+[

kb
c ]Em

({
ka

c

})
En

({
kb

c

})

=
1

4

∞∑
m,n=0

Tm,n

(
a b

c

)
xmyn

m!n!
.

This completes the proof. �

Theorem 2.3. Let a, b, c ∈ Z and (a, c) = (b, c) = 1. If c is a positive odd integer
and a, b have different parities, then we have

T a,bc (x, y) =
1

c
[e(x) + 1][e(y) + 1]

c−1∑
r=0

[
e

(
x− br

c

)
+ 1

]−1 [
e

(
y + ar

c

)
+ 1

]−1

.

By (14), the following corollary is an immediate consequence of the above
theorem.

Corollary 2.4. If c is a positive odd integer and a, b have different parities,
then we have

Fa,bc (x, y) =
1

c

c−1∑
r=0

[
e

(
x− br

c

)
+ 1

]−1 [
e

(
y + ar

c

)
+ 1

]−1

,

where a, b, c ∈ Z and (a, c) = (b, c) = 1.

Note that (see [19, p. 18, Lemma 3])

c−1∑
h=0

cotπ

(
z +

h

c

)
= c cotπ (cz) , (16)

where z is not an integer. Since cot z = − tan(z − π/2), from (16), we have

c−1∑
h=0

tanπ

(
z +

h

c

)
= c tanπ

(
cz +

c

2
− 1

2

)
. (17)
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It is clear from the definition that

[1 + e(z)]−1 =
1

2
(1− i tanπz), (18)

thus by Corollary 2.4, (17) and (18), we obtain the following result.

Corollary 2.5. If c is a positive odd integer and a, b have different parities,
then we have

Fa,bc (x, y) =
1

4

[
1− i

(
tanπ

(
y +

c

2
− 1

2

)
+ tanπ

(
x− c

2
+

1

2

))]
− 1

4c

c−1∑
r=0

tanπ

(
x− br

c

)
tanπ

(
y + ar

c

)
,

where a, b, c ∈ Z and (a, c) = (b, c) = 1.

Proof of the Theorem 2.3. Let c be a positive odd integer. It is easy to see that

c−1∑
j=0

(−1)je

(
jx

c

)
= [e (x) + 1]

[
e
(x
c

)
+ 1
]−1

,

c−1∑
j=0

(−1)je

(
jx

c

)
e

(
j

c

)
= [e (x) + 1]

[
e

(
x+ 1

c

)
+ 1

]−1

,

...

c−1∑
j=0

(−1)je

(
jx

c

)
e

(
j(c− 1)

c

)
= [e (x) + 1]

[
e

(
x+ c− 1

c

)
+ 1

]−1

.

(19)

For fixed h = 0, 1, . . . , c−1,multiplying (19) by e
(
−hj

c

)
for each j = 0, 1, . . . , c−

1, we have

c−1∑
j=0

(−1)je

(
jx

c

)
e

(
−0h

c

)
= [e (x) + 1]

[
e
(x
c

)
+ 1
]−1

e

(
−0h

c

)
,

c−1∑
j=0

(−1)je

(
jx

c

)
e

(
j

c

)
e

(
−1h

c

)

= [e (x) + 1]

[
e

(
x+ 1

c

)
+ 1

]−1

e

(
−1h

c

)
,

...

c−1∑
j=0

(−1)je

(
jx

c

)
e

(
j(c− 1)

c

)
e

(
− (c− 1)h

c

)

= [e (x) + 1]

[
e

(
x+ c− 1

c

)
+ 1

]−1

e

(
− (c− 1)h

c

)
.

(20)
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Summing both sides of (20), we get

c−1∑
j=0

e

(
−jh
c

)
+ (−1)1e

(x
c

) c−1∑
j=0

e

(
j(1− h)

c

)

+ (−1)2e

(
2x

c

) c−1∑
j=0

e

(
j(2− h)

c

)

+ · · ·+ (−1)h−1e

(
(h− 1)x

c

) c−1∑
j=0

e

(
j(h− 1− h)

c

)

+ (−1)he

(
hx

c

) c−1∑
j=0

1 + (−1)h+1e

(
(h+ 1)x

c

) c−1∑
j=0

e

(
j(h+ 1− h)

c

)

+ · · ·+ (−1)c−1e

(
(c− 1)x

c

) c−1∑
j=0

e

(
j(c− 1− h)

c

)

= [e (x) + 1]

c−1∑
j=0

[
e

(
x+ j

c

)
+ 1

]−1

e

(
−hj
c

)
.

(21)

Since ∑
r (mod c)

e

(
r(m− α)

c

)
=

{
c if m ≡ α (mod c),

0 if m ̸≡ α (mod c),

the left-hand side of (21) gives

(−1)hce

(
hx

c

)
.

Thus

e

(
hx

c

)
= (−1)h

1

c
[e (x) + 1]

c−1∑
j=0

[
e

(
x+ j

c

)
+ 1

]−1

e

(
−hj
c

)
, (22)

where h = 0, 1, . . . , c− 1 and c is a positive odd integer.
Letting h

c =
{
ak
c

}
with (a, c) = 1 in (22), we have

e

({
ak

c

}
x

)
= (−1)ak+[

ak
c ] 1

c
[e (x) + 1]

c−1∑
j=0

[
e

(
x+ j

c

)
+ 1

]−1

e

(
−j ak

c

)
,

(23)

where we have used the equality −hj
c = −j

{
ak
c

}
= −j akc + j

[
ak
c

]
and the fact

that (−1)h = (−1)c{
ak
c } = (−1)c(

ak
c −[ ak

c ]) = (−1)ak+[
ak
c ] in the case c is a

positive odd integer. Similarly, putting h
c =

{
bk
c

}
with (b, c) = 1 and replacing
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x by y in (22), we get

e

({
bk

c

}
y

)
= (−1)bk+[

bk
c ] 1

c
[e (y) + 1]

c−1∑
j=0

[
e

(
y + j

c

)
+ 1

]−1

e

(
−j bk

c

)
.

(24)
Then, from (23) and (24), we have

T a,bc (x, y) =

c−1∑
k=0

(−1)k+[
ka
c ]+[

kb
c ]e

({
ka

c

}
x+

{
kb

c

}
y

)
=

1

c2
[e (x) + 1] [e (y) + 1]

×
∑

p,q (mod c)

[
e

(
x+ p

c

)
+ 1

]−1 [
e

(
y + q

c

)
+ 1

]−1

×
c−1∑
k=0

(−1)k(a+b+1)e

(
−k(ap+ bq)

c

)
.

Suppose a and b have different parities. If we consider the complete residue
systems (mod c): p = −br, q = aρ (r, ρ = 0, 1, . . . , c − 1) and take into account
that

c−1∑
k=0

(−1)k(a+b+1)e

(
−k(ap+ bq)

c

)
=

c−1∑
k=0

e

(
−kab(ρ− r)

c

)
vanishes except for ρ = r when it has value c, then we have

T a,bc (x, y) =
1

c
[e(x) + 1][e(y) + 1]

c−1∑
r=0

[
e

(
x− br

c

)
+ 1

]−1 [
e

(
y + ar

c

)
+ 1

]−1

.

This completes the proof. �

Theorem 2.6. Let a, b, c ∈ Z and (a, c) = (b, c) = 1. If c is a positive odd integer
and a, b have different parities, then we have

Tm,n

(
a b

c

)
=

1

cm+n+1

[
Em(0)En(0) + 4

c−1∑
r=1

Hm(−ηbr)Hn(−η−ar)
(1 + η−br)(1 + ηar)

]
,

where m,n = 0, 1, 2, . . . and the Eulerian numbers Hn(η
k) defined for a root of

unity ηk = e
(
k
c

)
, c > 1, c - k is given by the following generating function

1− ηk

ez − ηk
=

∞∑
n=0

Hn(η
k)
zn

n!
, |z| < 2π

{
k

c

}
. (25)

Remark 2.1. In [7, (6.5)], Carlitz proved a similar result using different meth-
ods.
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Proof of the Theorem 2.6. If replacing x
2πi by x and y

2πi by y in Corollary 2.4,
then from usual simplifications, we find that

Fa,bc

( x

2πi
,
y

2πi

)
=

1

c

c−1∑
r=0

1

η−bre
x
c + 1

1

ηare
y
c + 1

(26)

By expanding the right-hand side of (26), we obtain

Fa,bc

( x

2πi
,
y

2πi

)
=

1

c

1

e
x
c + 1

1

e
y
c + 1

+
1

c

c−1∑
r=1

ηbr

e
x
c + ηbr

η−ar

e
y
c + η−ar

=
1

4c

2

e
x
c + 1

2

e
y
c + 1

+
1

c

c−1∑
r=1

1

1 + ηar
1

1 + η−br
1 + ηbr

e
x
c + ηbr

1 + η−ar

e
y
c + η−ar

=

∞∑
m,n=0

xnyn

m!n!

1

cm+n+1

[
Em(0)En(0)

4

+
c−1∑
r=1

Hm(−ηbr)Hn(−η−ar)
(1 + η−br)(1 + ηar)

]
.

(27)

Finally comparing the above equality with Proposition 2.2, we have

1

4
Tm,n

(
a b

c

)
=

1

cm+n+1

[
Em(0)En(0)

4
+
c−1∑
r=1

Hm(−ηbr)Hn(−η−ar)
(1 + η−br)(1 + ηar)

]
, (28)

where m,n = 0, 1, . . . . �

Remark 2.2. Ifm and n have different parities withm,n > 0, then Em(0)En(0) =
0, and Theorem 2.6 reduces to the following relation:

Tm,n

(
a b

c

)
=

4

cm+n+1

c−1∑
r=1

Hm(−ηbr)Hn(−η−ar)
(1 + η−br)(1 + ηar)

.

In particular, for m = n = 1 Theorem 2.6 becomes

T1,1

(
a b

c

)
=

1

4c3
+

1

c3

c−1∑
r=1

η(a−b)r

(1 + ηar)2(1 + η−br)2
.

A similar result for Bernoulli numbers has been discussed by Mikolas [16, (3.8)].
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