• Title/Summary/Keyword: Discrete interval time-varying system

Search Result 16, Processing Time 0.021 seconds

New Stability Conditions for Positive Time-Varying Discrete Interval System with Interval Time-Varying Delay Time (구간 시변 지연시간을 갖는 양의 시변 이산 구간 시스템의 새로운 안정 조건)

  • Han, Hyung-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.5
    • /
    • pp.501-507
    • /
    • 2014
  • A dynamic system is called positive if any trajectory of the system starting from non-negative initial states remains forever non-negative for non-negative controls. In this paper, new sufficient conditions for asymptotic stability of the interval positive time-varying linear discrete-time systems with time-varying delay in states are considered. The considered time-varying delay time has an interval-like bound which has minimum and maximum delay time. The proposed conditions are established by using a solution bound of the Lyapunov equation and they are expressed by simple inequalities which do not require any complex numerical algorithms. An example is given to illustrate that the new conditions are simple and effective in checking stability for interval positive time-varying discrete systems.

Stability Condition for Discrete Interval Time-Varying System with Unstructured Uncertainty and Time-Varying Delay Time (비구조화된 불확실성과 시변 지연시간을 갖는 이산 시변 구간 시스템의 안정조건)

  • Hyung-seok Han
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.504-509
    • /
    • 2022
  • In this paper, we deal with the stability condition of linear time-varying interval discrete systems with time-varying delays and unstructured uncertainty. For the time-varying interval discrete system which has interval matrix as its system matrices, time-varying delay time within some interval value and unstructured uncertainty which can include non-linearity and be expressed by only its magnitude, the stability condition is proposed. Compared with the previous result derived by using a upper bound solution of the Lyapunov equation, the new result is derived by the form of simple inequality based on Lyapunov stability condition and has the advantage of being more effective in checking stability. Furthermore, the proposed condition is very comprehensive, powerful and inclusive the previously published conditions of various linear discrete systems, and can be expressed by the terms of magnitudes of the time-varying delay time and uncertainty, and bounds of interval matrices. The superiority of the new condition is shown in the derivation, and the usefulness and advantage of the proposed condition are examined through numerical example.

Stability Bounds of Unstructured and Time-Varying Delayed State Uncertainties for Discrete Interval Time-Varying System (이산 시변 구간 시스템의 비구조화된 불확실성과 시변 지연시간 상태변수 불확실성의 안정범위)

  • Hyung-seok Han
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.871-876
    • /
    • 2023
  • In this paper, we deal with the stable conditions when two uncertainties exist simultaneously in a linear discrete time-varying interval system with time-varying delay time. The interval system is a system in which system matrices are given in the form of an interval matrix, and this paper targets the system in which the delay time of these interval system matrices and state variables is time-varying. We propose the system stability condition when there is simultaneous unstructured uncertainty that includes nonlinearity and only its magnitude and uncertainty in the system matrix of delayed state variables. The stable bounds for two types of uncertainty are derived as an analytical equation. The proposed stability condition and bounds can include previous stability condition for various linear discrete systems, and the values such as time-varying delay time variation size, uncertainty size, and range of interval matrix are all included in the conditional equation. The new bounds of stability are compared with previous results through numerical example, and its effectiveness and excellence are verified.

Stability Condition for Discrete Interval Time-varying System with Time-varying Delay Time (시변 지연시간을 갖는 이산 구간 시변 시스템의 안정조건)

  • Han, Hyung-seok
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.475-481
    • /
    • 2016
  • In this paper, the new stability condition of linear discrete interval time-varying systems with time-varying delay time is proposed. The considered system has interval time-varying system matrices for both non-delayed and delayed states with time-varying delay time within given interval values. The proposed condition is derived by using Lyapunov stability theory and expressed by very simple inequality. The restricted stability issue on the interval time-invariant system is expanded to interval time-varying system and a powerful stability condition which is more comprehensive than the previous is proposed. As a results, it is possible to avoid the introduction of complex linear matrix inequality (LMI) or upper solution bound of Lyapunov equation in the derivation of sufficient condition. Also, it is shown that the proposed result can include the many existing stability conditions in the previous literatures. A numerical example in the pe revious works is modified to more general interval system and shows the expandability and effectiveness of the new stability condition.

Stability Condition for Discrete Interval System with Time-Varying Delay Time (시변 지연시간을 갖는 이산 구간 시스템의 안정조건)

  • Han, Hyung-seok
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.574-580
    • /
    • 2015
  • The stability condition of linear discrete interval systems with a time-varying delay time is considered. The considered system has interval system matrices for both non-delayed and delayed states with time-varying delay time within given interval values. The proposed condition is derived by using Lyapunov stability theory and expressed by very simple inequality. Compared to previous results, the stability issue on the interval systems is expanded to time-varying delay. Furthermore, the new condition can imply the existing results on the time-invariant case and show the relation between interval time-varying delay time and stability of the system. The proposed condition can be applied to find the stability bound of the discrete interval system. Some numerical examples are given to show the effectiveness of the new condition and comparisons with the previously reported results are also presented.

Stability Bound for Time-Varying Uncertainty of Time-varying Discrete Interval System with Time-varying Delay Time (시변 지연시간을 갖는 이산 구간 시변 시스템의 시변 불확실성의 안정범위)

  • Han, Hyung-seok
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.608-613
    • /
    • 2017
  • In this paper, we consider the stability bound for uncertainty of delayed state variables in the linear discrete interval time-varying systems with time-varying delay time. The considered system has an interval time-varying system matrix for non-delayed states and is perturbed by the unstructured time-varying uncertainty in delayed states with time-varying delay time within fixed interval. Compared to the previous results which are derived for time-invariant cases and can not be extended to time-varying cases, the new stability bound in this paper is applicable to time-varying systems in which every factors are considered as time-varying variables. The proposed result has no limitation in applicable systems and is very powerful in the aspects of feasibility compared to the previous. Furthermore. the new bound needs no complex numerical algorithms such as LMI(Linear Matrix Inequality) equation or upper solution bound of Lyapunov equation. By numerical examples, it is shown that the proposed bound is able to include the many existing results in the previous literatures and has better performances in the aspects of expandability and effectiveness.

Stability Condition for Discrete Interval System with Unstructured Uncertainty and Time-Varying Delay Time (비구조화된 불확실성과 시변 지연 시간을 갖는 이산 구간 시스템의 안정조건)

  • Hyung-seok Han
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.551-556
    • /
    • 2021
  • In this paper, we deal with the stability condition of linear interval discrete systems with time-varying delays and unstructured uncertainty. For the interval discrete system which has interval matrix as its system matrices, time-varying delay time within some interval value and unstructured uncertainty which can include non-linearity and be expressed by only its magnitude, the stability condition is proposed. Compared with the previous result derived by using a upper bound solution of the Lyapunov equation, the new results are derived by the form of simple inequality based on Lyapunov stability condition and have the advantage of being more effective in stability application. Furthermore, the proposed stable conditions are very comprehensive and powerful, including the previously published stable conditions of various linear discrete systems. The superiority of the new condition is proven in the derivation process, and the utility and superiority of the proposed condition are examined through numerical example.

Stability Conditions for Positive Time-Varying Discrete Interval System with Unstructured Uncertainty (비구조화 불확실성을 갖는 양의 시변 이산 구간 시스템의 안정 조건)

  • Han, Hyung-seok
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.577-583
    • /
    • 2019
  • A dynamic system is called positive if any trajectory of the system starting from non-negative initial states remains forever non-negative for non-negative controls. In this paper, we consider the new stability condition for the positive time-varying linear discrete interval systems with time-varying delay and unstructured uncertainty. The delay time is considered as time-varying within certain interval having minimum and maximum values and the system is subjected to nonlinear unstructured uncertainty which only gives information on uncertainty magnitude. The proposed stability condition is an improvement of the previous results which can be applied only to time-invariant systems or had no consideration of uncertainty, and they can be expressed in the form of a very simple inequality. The stability conditions are derived using the Lyapunov stability theory and have many advantages over previous results using the upper solution bound of the Lyapunov equation. Through numerical example, the proposed stability conditions are proven to be effective and can include the existing results.

Stability Bounds of Time-Varying Uncertainty and Delay Time for Discrete Systems with Time-Varying Delayed State (시변 시간지연을 갖는 이산시스템의 시변 불확실성의 안정 범위)

  • Han, Hyung-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.10
    • /
    • pp.895-901
    • /
    • 2012
  • The stability robustness problem of linear discrete systems with time-varying unstructured uncertainty of delayed states with time-varying delay time is considered. The proposed conditions for stability can be used for finding allowable bounds of timevarying uncertainty and delay time, which are solved by using LMI (Linear Matrix Inequality) and GEVP (Generalized Eigenvalue Problem) known as powerful computational methods. Furthermore, the conditions can imply the several previous results on the uncertainty bounds of time-invariant delayed states. Numerical examples are given to show the effectiveness of the proposed algorithms.

H Filtering for a Class of Nonlinear Systems with Interval Time-varying Delay (구간시변 지연을 가지는 비선형시스템의 H 필터링)

  • Lee, Sangmoon;Liu, Yajuan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.502-508
    • /
    • 2014
  • In this paper, a delay-dependent $H_{\infty}$ filtering problem is investigated for discrete-time delayed nonlinear systems which include a more general sector nonlinear function instead of employing the commonly used Lipschitz-type function. By using the Lyapunov-Krasovskii functional approach, a less conservative sufficient condition is established for the existence of the desired filter, and then, the corresponding solvability condition guarantee the stability of the filter with a prescribed $H_{\infty}$ performance level. Finally, two simulation examples are given to show the effectiveness of the proposed filtering scheme.