• Title/Summary/Keyword: Conditional heteroskedasticity

Search Result 22, Processing Time 0.031 seconds

Estimation of Seasonal Cointegration under Conditional Heteroskedasticity

  • Seong, Byeongchan
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.6
    • /
    • pp.615-624
    • /
    • 2015
  • We consider the estimation of seasonal cointegration in the presence of conditional heteroskedasticity (CH) using a feasible generalized least squares method. We capture cointegrating relationships and time-varying volatility for long-run and short-run dynamics in the same model. This procedure can be easily implemented using common methods such as ordinary least squares and generalized least squares. The maximum likelihood (ML) estimation method is computationally difficult and may not be feasible for larger models. The simulation results indicate that the proposed method is superior to the ML method when CH exists. In order to illustrate the proposed method, an empirical example is presented to model a seasonally cointegrated times series under CH.

Volatility Forecasting of Korea Composite Stock Price Index with MRS-GARCH Model (국면전환 GARCH 모형을 이용한 코스피 변동성 분석)

  • Huh, Jinyoung;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.3
    • /
    • pp.429-442
    • /
    • 2015
  • Volatility forecasting in financial markets is an important issue because it is directly related to the profit of return. The volatility is generally modeled as time-varying conditional heteroskedasticity. A generalized autoregressive conditional heteroskedastic (GARCH) model is often used for modeling; however, it is not suitable to reflect structural changes (such as a financial crisis or debt crisis) into the volatility. As a remedy, we introduce the Markov regime switching GARCH (MRS-GARCH) model. For the empirical example, we analyze and forecast the volatility of the daily Korea Composite Stock Price Index (KOSPI) data from January 4, 2000 to October 30, 2014. The result shows that the regime of low volatility persists with a leverage effect. We also observe that the performance of MRS-GARCH is superior to other GARCH models for in-sample fitting; in addition, it is also superior to other models for long-term forecasting in out-of-sample fitting. The MRS-GARCH model can be a good alternative to GARCH-type models because it can reflect financial market structural changes into modeling and volatility forecasting.

Volatility analysis and Prediction Based on ARMA-GARCH-typeModels: Evidence from the Chinese Gold Futures Market (ARMA-GARCH 모형에 의한 중국 금 선물 시장 가격 변동에 대한 분석 및 예측)

  • Meng-Hua Li;Sok-Tae Kim
    • Korea Trade Review
    • /
    • v.47 no.3
    • /
    • pp.211-232
    • /
    • 2022
  • Due to the impact of the public health event COVID-19 epidemic, the Chinese futures market showed "Black Swan". This has brought the unpredictable into the economic environment with many commodities falling by the daily limit, while gold performed well and closed in the sunshine(Yan-Li and Rui Qian-Wang, 2020). Volatility is integral part of financial market. As an emerging market and a special precious metal, it is important to forecast return of gold futures price. This study selected data of the SHFE gold futures returns and conducted an empirical analysis based on the generalised autoregressive conditional heteroskedasticity (GARCH)-type model. Comparing the statistics of AIC, SC and H-QC, ARMA (12,9) model was selected as the best model. But serial correlation in the squared returns suggests conditional heteroskedasticity. Next part we established the autoregressive moving average ARMA-GARCH-type model to analysis whether Volatility Clustering and the leverage effect exist in the Chinese gold futures market. we consider three different distributions of innovation to explain fat-tailed features of financial returns. Additionally, the error degree and prediction results of different models were evaluated in terms of mean squared error (MSE), mean absolute error (MAE), Theil inequality coefficient(TIC) and root mean-squared error (RMSE). The results show that the ARMA(12,9)-TGARCH(2,2) model under Student's t-distribution outperforms other models when predicting the Chinese gold futures return series.

Stock Market Forecasting : Comparison between Artificial Neural Networks and Arch Models

  • Merh, Nitin
    • Journal of Information Technology Applications and Management
    • /
    • v.19 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • Data mining is the process of searching and analyzing large quantities of data for finding out meaningful patterns and rules. Artificial Neural Network (ANN) is one of the tools of data mining which is becoming very popular in forecasting the future values. Some of the areas where it is used are banking, medicine, retailing and fraud detection. In finance, artificial neural network is used in various disciplines including stock market forecasting. In the stock market time series, due to high volatility, it is very important to choose a model which reads volatility and forecasts the future values considering volatility as one of the major attributes for forecasting. In this paper, an attempt is made to develop two models - one using feed forward back propagation Artificial Neural Network and the other using Autoregressive Conditional Heteroskedasticity (ARCH) technique for forecasting stock market returns. Various parameters which are considered for the design of optimal ANN model development are input and output data normalization, transfer function and neuron/s at input, hidden and output layers, number of hidden layers, values with respect to momentum, learning rate and error tolerance. Simulations have been done using prices of daily close of Sensex. Stock market returns are chosen as input data and output is the forecasted return. Simulations of the Model have been done using MATLAB$^{(R)}$ 6.1.0.450 and EViews 4.1. Convergence and performance of models have been evaluated on the basis of the simulation results. Performance evaluation is done on the basis of the errors calculated between the actual and predicted values.

An Exponential GARCH Approach to the Effect of Impulsiveness of Euro on Indian Stock Market

  • Sahadudheen, I
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.2 no.3
    • /
    • pp.17-22
    • /
    • 2015
  • This paper examines the effect of impulsiveness of euro on Indian stock market. In order to examine the problem, we select rupee-euro exchange rates and S&P CNX NIFTY and BSE30 SENSEX to represent stock price. We select euro as it considered as second most widely used currency at the international level after dollar. The data are collected a daily basis over a period of 3-Apr-2007 to 30-Mar-2012. The statistical and time series properties of each and every variable have examined using the conventional unit root such as ADF and PP test. Adopting a generalized autoregressive conditional heteroskedasticity (GARCH) and exponential GARCH (EGARCH) model, the study suggests a negative relationship between exchange rate and stock prices in India. Even though India is a major trade partner of European Union, the study couldn't find any significant statistical effect of fluctuations in Euro-rupee exchange rates on stock prices. The study also reveals that shocks to exchange rate have symmetric effect on stock prices and exchange rate fluctuations have permanent effects on stock price volatility in India.

Some limiting properties for GARCH(p, q)-X processes

  • Lee, Oesook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.3
    • /
    • pp.697-707
    • /
    • 2017
  • In this paper, we propose a modified GARCH(p, q)-X model which is obtained by adding the exogenous variables to the modified GARCH(p, q) process. Some limiting properties are shown under various stationary and nonstationary exogenous processes which are generated by another process independent of the noise process. The proposed model extends the GARCH(1, 1)-X model studied by Han (2015) to various GARCH(p, q)-type models such as GJR GARCH, asymptotic power GARCH and VGARCH combined with exogenous process. In comparison with GARCH(1, 1)-X, we expect that many stylized facts including long memory property of the financial time series can be explained effectively by modified GARCH(p, q) model combined with proper additional covariate.

주식수익율(柱式收益率) 변동폭(變動幅)의 규모효과(規模效果)와 비대칭효과(非對稱效果)

  • Go, Yeong-Seon
    • KDI Journal of Economic Policy
    • /
    • v.15 no.4
    • /
    • pp.155-173
    • /
    • 1993
  • 주식수익율(株式收益率)의 조건부분산(條件附分散)의 움직임을 모형화(模型化)하기 위하여 Engle(1982)의 ARCH(Autoregressive Conditional Heteroskedasticity)모형(模型)을 효시(嚆矢)로 많은 종류의 모형(模型)이 제시되어 왔다. 이 가운데서 Nelson(1991)의 EGARCH(Exponential Generalized ARCH)는 종래의 모형(模型)에 비하여 여러가지 장점(長點)을 지니고 있는 모형(模型)이다. 그러나 EGARCH에서는 비기대수익율(非期待收益率)(unexpected return)이 조건부분산(條件附分散)에 미처는 규모효과(規模效果)(magnitude effect)와 비대칭효과(非對稱效果)(asymmetry effect)의 영향(影響)이 동일한 동태(動態)(dynamics)를 보인다고 가정(假定)하고 있다. 본(本) 논문(論文)은 이 가정(假定)을 완화하였을 때 규모효과(規模效果)와 비대칭효과(非對稱效果)가 매우 다른 동태(動態)를 가지며, 특히 규모효과(規模效果)의 영향은 오래 지속되는 반면 비대칭효과(非對稱效果)는 비교적 빠르게 사라짐을 보여준다.

  • PDF

GMM을 이용한 자본자산가격결정모형(資本資産價格決定模型)의 추정(推定)

  • Lee, Ju-Hui;Nam, Ju-Ha
    • The Korean Journal of Financial Management
    • /
    • v.9 no.2
    • /
    • pp.57-75
    • /
    • 1992
  • 본 논문은 10개의 기업규모별 자산을 대상으로 최근에 발전된 계량기법인 GMM(generalized method of moments)을 이용하여 베타(beta)를 추정하였다. 분석대상기간으로 $1982.1{\sim}1991.4$사이의 월별자료를 사용한다. 실증분석 결과에 의하면, 기업규모별 구분에 따른 자산의 경우에 규모가 큰 기업보다 규모가 작은 기업의 베타가 상대적으로 작은 것으로 나타났다. GMM의 추정을 위한 수단변수로 회사채수익률과 정기예금금리의 금리차, 분석대상이 되는 자산 수익률과 시장포트폴리오의 자기시차, 그리고 상수가 사용되었다. OLS를 사용한 CAPM추정 결과에 비해 GMM을 사용한 추정 결과가 우월할 수 있음을 보여주고 있는데, 이것은 GMM에 사용된 수단변수들이 수단변수를 포함시킴으로써 관련자산들의 자기시차가 아닌 CAPM추정에 필요한 유용한 대용변수(代用變數)(proxy)를 제공하였고, 나아가 GMM이 잔차항(殘差項)의 자기상관(自己相關) 뿐만 아니라 조건부(條件附) 이분산(異分散)(conditional heteroskedasticity)을 잘 설명하고 있기 때문인 것으로 판단된다. t값 및 P-value에 의하면 GMM을 사용한 단순 CAPM 추정이 우리 나라의 현실경제와 잘 부합될 수 있음을 암시한다.

  • PDF

Application to the Stochastic Modelling of Risk Measurement in Bunker Price and Foreign Exchange Rate on the Maritime Industry (확률변동성 모형을 적용한 해운산업의 벙커가격과 환율 리스크 추정)

  • Kim, Hyunsok
    • Journal of Korea Port Economic Association
    • /
    • v.34 no.1
    • /
    • pp.99-110
    • /
    • 2018
  • This study empirically examines simple methodology to quantify the risk resulted from the uncertainty of bunker price and foreign exchange rate, which cause main resources of the cost in shipping industry during the periods between $1^{st}$ of January 2010 and $31^{st}$ of January 2018. To shed light on the risk measurement in cash flows we tested GBM(Geometric Brownian Motion) frameworks such as the model with conditional heteroskedasticity and jump diffusion process. The main contribution based on empirical results are summarized as following three: first, the risk analysis, which is dependent on a single variable such as freight yield, is extended to analyze the effects of multiple factors such as bunker price and exchange rate return volatility. Second, at the individual firm level, the need for risk management in bunker price and exchange rate is presented as cash flow. Finally, based on the scale of the risk presented by the analysis results, the shipping companies are required that there is a need to consider what is appropriate as a means of risk management.

An Empirical Study on the Stock Volatility of the Korean Stock Market (한국 증권시장의 주가변동성에 관한 실증적 연구)

  • Park, Chul-Yong
    • Korean Business Review
    • /
    • v.16
    • /
    • pp.43-60
    • /
    • 2003
  • There are several stylized facts concerning stock return volatility. First, it is persistent, so an increase in current volatility lasts for many periods. Second, stock volatility increases after stock prices fall. Third, stock volatility is related to macroeconomic volatility, recessions, and banking crises. On the other hand, there are many competing parametric models to represent conditional heteroskedasticity of stock returns. For this article, I adopt the strategy followed by French, Schwert, and Stambaugh(1987) and Schwert(l989, 1990). The models in this article provide a more structured analysis of the time-series properties of stock market volatility. Briefly, these models remove autoregressive and seasonal effects from daily returns to estimate unexpected returns. Then the absolute values of the unexpected returns are used in an autoregressive model to predict stock volatility.

  • PDF