References
- Atsmegiorgis, C., Kim, J. and Yoon, S. (2016). The GARCH-GPD in market risks modeling: An empirical exposition on KOSPI. Journal of the Korean data & Information Science Society, 27, 1661-1671. https://doi.org/10.7465/jkdi.2016.27.6.1661
- Bollerslev, T. (1986). Generalized autoregressive conditional heteroscedasticity. Journal of Econometrics, 31, 307-321. https://doi.org/10.1016/0304-4076(86)90063-1
- Brenner, R., Harjes, R. and Kroner, K. (1996). Another look at models of the short-term interest rate. Journal of Financial and Quantitative Analysis, 31, 85-107. https://doi.org/10.2307/2331388
- Davidson, J. (2002). Establishing conditions for the functional central limit theorem in nonlinear and semiparametric time series processes. Journal of Econometrics, 105, 243-269.
- Davidson, J. and De Jong, R. M. (2000). The functional central limit theorem and weak convergence to stochastic integrals II: Fractionally integrated processes. Econometrics Theory, 16, 643-666. https://doi.org/10.1017/S0266466600165028
- Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of variance of U.K. inflation. Econometrica, 50, 987-1008. https://doi.org/10.2307/1912773
- Engle, R. F. and Patton, A. (2001). What good is a volatility models?. Quantitative Finance, 1, 237-245. https://doi.org/10.1088/1469-7688/1/2/305
- Fleming, T., Kirby, C. and Ostdiek, B. (2008). The specification of GARCH models with stochastic covari ates. Journal of Futures Markets, 28, 911-934. https://doi.org/10.1002/fut.20340
- Giraitis, L., Leipus, R. and Surgailis, D. (2007). Recent advances in ARCH modelling. In Long Memory in Economics (pp.3-38). Berlin, Springer.
- Han, H. (2015). Asymptotic properties of GARCH-X processes. Journal of Financial Econometrics, 13, 188-221. https://doi.org/10.1093/jjfinec/nbt023
- Han, H. and Park, J. Y. (2008). Time series properties of ARCH processes with persistent covariates. Journal of Econometrics, 146, 275-292. https://doi.org/10.1016/j.jeconom.2008.08.016
- Hwang, S. and Satchell, S. (2005). GARCH model with cross-sectional volatility: GARCH-X models. Applied Financial Economics, 15, 203-216. https://doi.org/10.1080/0960310042000314214
- Jeong, S. H. and Lee, T. W. (2017). A numerical study on option pricing based on GARCH models with normal mixture errors. Journal of the Korean data & Information Science Society, 28, 251-260. https://doi.org/10.7465/jkdi.2017.28.2.251
- Lee, O. (2014). Functional central limit theorems for augmented GARCH(p,q) and FIGARCH processes. Journal of the Korean Statistical Society, 43, 393-401. https://doi.org/10.1016/j.jkss.2013.12.001
- Park, J. (2002). Nonstationary nonlinear heteroscedasticity. Journal of Econometrics, 110, 383-415. https://doi.org/10.1016/S0304-4076(02)00100-8
- Park, J. and Phillips, P. (1999). Asymptotics for nonlinear transformations of integrated time series. Econometric Theory, 15, 269-298.
- Park, J. and Phillips, P. (2001). Nonlinear regressions with integrated time series. Econometrica, 69, 117-161. https://doi.org/10.1111/1468-0262.00180
- Phillips, P. and Solo, V. (1992). Asymptotics for linear processes. The Annals of Statistics, 20, 971-1001. https://doi.org/10.1214/aos/1176348666