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Abstract
We consider the estimation of seasonal cointegration in the presence of conditional heteroskedasticity (CH)

using a feasible generalized least squares method. We capture cointegrating relationships and time-varying
volatility for long-run and short-run dynamics in the same model. This procedure can be easily implemented
using common methods such as ordinary least squares and generalized least squares. The maximum likelihood
(ML) estimation method is computationally difficult and may not be feasible for larger models. The simulation
results indicate that the proposed method is superior to the ML method when CH exists. In order to illustrate the
proposed method, an empirical example is presented to model a seasonally cointegrated times series under CH.

Keywords: seasonal error correction model, seasonal unit root, reduced rank estimation, multi-
variate GARCH, feasible generalized least squares, maximum likelihood estimation, vector au-
toregressive model

1. Introduction

The seminal work of Engle and Granger (1987) allowed statistical methods to be applied to the anal-
ysis of cointegrated systems. Among others, the joint modeling of cointegration and generalized
autoregressive conditional heteroskedasticity (GARCH), proposed by Bollerslev (1986) has attracted
the attention of many researchers in finance and economics because the same model can explain two
common economic variable characteristics of long-run equilibrium and time-varying volatility. For
example, Seo (2007) developed the asymptotic distribution of the cointegrating vector estimator in
the vector error correction model (VECM) with GARCH errors. Herwartz and Lütkepohl (2011) pro-
posed a feasible generalized least squares (FGLS) estimator in the joint model and showed that it has
superior small sample properties. However, all these studies are restricted to nonseasonal cointegra-
tion.

The VECM for seasonal cointegration is more complicated and has more parameters than nonsea-
sonal cointegration. This is because the former has more than two error correction terms, composed
of several seasonal filters including complex unit roots; see, for example, Seong (2013) and the ref-
erences cited therein. Therefore, if we use a full maximum likelihood (ML) procedure that takes into
account the GARCH errors, computation of the estimates will be quite demanding, and it may even
be infeasible for larger models with a moderate number of variables and a realistic number of lags.

We explore the estimation of a seasonal VECM with conditional heteroskedasticity (CH) using a
FGLS method that is easier to implement than the ML method. The proposed method relies on com-
mon linear regression methods, such as ordinary least squares (OLS) and generalized least squares
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(GLS), which do not require numerical optimization; subsequently, all the computations are based
on closed form expressions. Monte Carlo experiments are conducted to evaluate the proposed pro-
cedure and for an empirical illustration, we analyze monthly U.S. Housing Starts and Sold using the
procedure.

2. The Model

We consider a vector autoregressive (VAR) model for a K-dimensional process Yt satisfying

Π(L)Yt =

IK −
p∑

j=1

Π jL j

 Yt = εt, for t = 1, . . . ,T, (2.1)

where IK denotes a K×K identity matrix,Π(L) is a polynomial matrix, and L is a lag operator such that
L jYt = Yt− j. To allow for the possible presence of CH, the error process εt is assumed to be a vector
martingale difference sequence with E(εt |Ft−1) = 0 and E(εtε

′
t |Ft−1) = Ωt, where Ft is the σ-field

generated by Yt,Yt−1, . . . . We assume that the roots of the determinant |Π(z)| = 0 are on or outside
the unit circle and that Yt is observed on a quarterly basis and has no deterministic terms. Models
with other seasonal periods (e.g., monthly) and models with deterministic terms that may contain a
constant, a linear trend, or seasonal dummies can easily be implemented as in Ahn et al. (2004).

Then, as in Ahn et al. (2004), if the series are cointegrated of order (1, 1) at frequencies 0, π, π/2,
and 3π/2, model (2.1) can be rewritten as the following seasonal VECM:

Ψ(L)Zt = A1B1Ut−1 + A2B2Vt−1 + (A3B4 + A4B3)Wt−1 + (A4B4 − A3B3)Wt−2 + εt, (2.2)

where Zt = (1− L4)Yt, Ut = (1+L)(1+L2)Yt, Vt = (1−L)(1+L2)Yt, Wt = (1−L2)Yt, Ψ(L) is a matrix
polynomial of order p − 4, A j and B j are K × r j and r j × K matrices, respectively, with rank equal to
r j for j = 1, . . . , 4, and r3 = r4. For a unique parameterization, we need to normalize the B js such that
B1 = [Ir1 , B10], B2 = [Ir2 , B20], B3 = [Ir3 , B30], and B4 = [Or3 , B40], where Or j is an r j × r j matrix of
zeros, and the B j0s are r j× (K − r j) matrices of unknown parameters. Lütkepohl (2005) explained that
this normalization does not imply a loss of generality from a practical point of view. Note that r1, r2,
and r3(r4) denote the seasonal cointegrating ranks at frequencies 0, π, and π/2 (3π/2), respectively,
and that B1Ut, B2Vt, (B3 + B4L)Wt, and (B4 − B3L)Wt are stationary processes, that is, they represent
cointegrating relationships or long-run equilibrium relationships.

3. Estimation of a Seasonal VECM with CH

Before we present a FGLS method for estimating seasonal cointegration under CH, we consider a
Gaussian ML estimation.

3.1. ML estimation

For a sample with T observations and p presample values, ML estimation of VECM (2.2) is theoret-
ically straightforward if we assume εt |Ft−1 ∼ N(0,Ωt). Collecting all parameters in a vector η, the
log-likelihood function is given by

l(η) = T−1
T∑

t=1

lt(η), where lt(η) = −1
2

log |Ωt(η)| − 1
2
εt(η)′Ωt(η)−1εt(η). (3.1)
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Therefore, full ML estimator with allowance for CH (FML) can be obtained by maximizing the func-
tion. Ahn and Reinsel (1994) obtained the ML estimator ignoring CH, that is, assuming εt ∼ N(0,Ω),
by the Gaussian reduced rank ML estimation (RRML).

3.2. A FGLS estimation

Given the practical difficulties in computing the ML estimator in the presence of CH, we propose the
following three-step procedure for a FGLS estimator.

Step 1. Estimate the parameters in the model

Ψ(L)Zt = C1Ut−1 +C2Vt−1 +C3Wt−1 +C4Wt−2 + εt (3.2)

by OLS and denote the residuals by ε̂t. Then, estimate the CH parameters, say θ, from a pseudo ML
estimation based on maximizing l̂(θ) = T−1 ∑T

t=1 l̂t(θ), where

l̂t(θ) = −
1
2

log |Ωt(θ)| −
1
2
ε̂′tΩt(θ)−1ε̂t.

Denote the resulting estimate by θ̂ and define Ω̂t = Ωt(θ̂).

Step 2. Obtain a feasible estimator α̂ for α = vec(C1,C2,C3,C4,Ψ1, . . . ,Ψp−4) from the transformed
model, which is derived by premultiplying VECM (2.2) by the Ω̂−1/2

t from Step 1,

Ω̂
− 1

2
t Zt =

[
Pt ⊗ Ω̂

− 1
2

t

]
α + ε̃t, (3.3)

where Pt = [U′t−1,V
′
t−1,W

′
t−1,W

′
t−2,Z

′
t−1, . . . ,Z

′
t−p+4], ε̃t = Ω̂

−1/2
t εt and vec(·) vectorizes a matrix

columnwise from left to right, and ⊗ denotes the Kronecker product. The FGLS estimator α̂ is then
given by

α̂ = vec
(
Ĉ1, Ĉ2, Ĉ3, Ĉ4, Ψ̂1, . . . , Ψ̂p−4

)
=

 T∑
t=1

(
Pt
′Pt ⊗ Ω̂−1

t

)−1

vec

 T∑
t=1

(
Ω̂−1

t ZtPt

) .
Then, we can obtain Â1 = Ĉ11, Â2 = Ĉ12, Â3 = −Ĉ14, and Â4 = Ĉ13 as the FGLS estimators for A1,
A2, A3, and A4, respectively, where Ĉ1 j is the matrix with the first r j columns of Ĉ j for j = 1, 2, 3, 4,
by using the following relationships between models (2.2) and (3.2).

C j =


A jB j = [A j, A jB j0], for j = 1, 2,
A3B4 + A4B3 = [A4, A3B40 + A4B30], for j = 3,
A4B4 − A3B3 = [−A3,−A3B30 + A4B40], for j = 4.

If there is no CH so that Ωt = Ω, the FGLS estimator reduces precisely to the RRML estimator
considered by Ahn and Reinsel (1994). As usual, the covariance matrix of α̂ is calculated by var(α̂) =
[
∑T

t=1 (Pt
′Pt ⊗ Ω̂−1

t )]−1.
Step 3. In order to compute the FGLS estimator β̂ for β = vec(B10, B20, B30, B40), we take a multi-
variate linear regression model (obtained from the model in (3.3) by replacing the A js and the Ψ js by
their respective FGLS estimators, Â js and Ψ̂ js). Thus,

Z̃t = Ω̂
− 1

2
t Qtβ + ε̃t,
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where

Z̃t = Ω̂
− 1

2
t

Zt − Â1U1t−1 − Â2V1t−1 − Â4W1t−1 + Â3W1t−2 −
p−4∑
j=1

Ψ̂ jZt− j

 ,
Qt =

[
U′2t−1 ⊗ Â1, V ′2t−1 ⊗ Â2, W ′

2t−1 ⊗ Â4 −W ′
2t−2 ⊗ Â3, W′2t−1 ⊗ Â3 +W′2t−2 ⊗ Â4

]
,

U1t, V1t, and W1t are the first r1, r2, and r3 components of Ut, Vt, and Wt, respectively, and U2t, V2t,
and W2t are the last K − r1, K − r2, and K − r3 components of Ut, Vt, and Wt, respectively. Then, the
FGLS estimator for β can be expressed by

β̂ =

 T∑
t=1

Q′t Ω̂
−1
t Qt

−1  T∑
t=1

Q′t Ω̂
−1
t Żt

 ,
where Żt = Zt − Â1U1t−1 − Â2V1t−1 − Â4W1t−1 + Â3W1t−2 −

∑p−4
j=1 Ψ̂ jZt− j. Similarly in Step 2, if there

is no CH, the FGLS estimator reduces to the estimator in Ahn and Reinsel (1994). The covariance
matrix of β̂ is calculated as var(β̂) = (

∑T
t=1 Q′t Ω̂−1

t Qt)−1.

4. Monte Carlo Simulations

Monte Carlo simulations are conducted to evaluate the finite sample properties of the FGLS estimators
suggested in this article. We compare these properties with those of the two ML-based estimators,
FML and RRML, which are explained in Section 3.1.

We consider a bivariate data-generating process (DGP) as follows:

Zt = −A3B3Wt−2 + εt, (4.1)

where Zt = (1 − L4)Yt, A3 = (0, a3)′ = (0, 0.5)′ and B3 = (1, b3) = (1,−1). We also assume εt = Let

and E(ete′t |Ft−1) = Σt, where

L =
(

1 0
λ 1

)
, Σt =

(
σ2

1t 0
0 σ2

2t

)
, (4.2)

σ2
jt = ω j + ψ je2

j,t−1 + ϕ jσ
2
j,t−1, e jt = σ jtξ jt, and ξ jt ∼ N(0, 1) for j = 1, 2. (4.3)

The Yts in equation (4.1) are seasonally cointegrated with a cointegrating rank of one only at frequency
π/2, εt is a generalized orthogonal (GO-) GARCH process (van der Weide, 2002), and λ determines
the correlation between the two components of εt. Note that Yt is cointegrated at a single seasonal
frequency but if one performs a usual cointegration analysis by Johansen (1988), we cannot obtain the
correct cointegrating relationship. It is related to a different form of VECM for seasonal cointegration.

The cointegrating parameter b3 = −1 is in line with typical parameter in economic models. Table
1 summarizes the of values of the parameters λ, ψ j and ϕ j used in the simulations. As in most of the
DGPs in Seo (2007) and Herwartz and Lütkepohl (2011), we choose identical values for the GARCH
parameters of the two error components, and we set the value of ψ j + ϕ j to be close to unity. It is
suitable for investigating possible estimation efficiency losses due to model misspecification since the
case of (ψ j, ϕ j) = (0, 0) has no GARCH and assumes GARCH when there is none. Note that for
higher frequency data, the GARCH parameter ψ j tends to be closer to zero while ϕ j is often close to
unity.
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Table 1: Parameter values used in Monte Carlo simulations

DGPs λ ψ j ϕ j
1 0 0 0
2 −0.5 0.10 0.85
3 0.5 0.10 0.85
4 −0.5 0.25 0.70
5 0.5 0.25 0.70
6 −0.5 0.40 0.55
7 0.5 0.40 0.55
8 BEKK
9 DCC

DGP = data-generating process.

For GARCH processes which do not have a GO-GARCH structure, we consider two more multi-
variate GARCH processes. DGP 8 is a BEKK model (Engle and Kroner, 1995), i.e.,

Ωt = DD′ + Fεtε
′
t F
′ + HΩt−1H′,

with

D =
(

2.5 × 10−3 0
−8.4 × 10−4 8.3 × 10−5

)
, F =

(
0.229 −0.173
0.005 0.174

)
, and H =

(
0.954 0.033
0.008 0.981

)
.

The parameter values are identical to those used in Herwartz and Lütkepohl (2011). Note that this
BEKK process has high persistence in second moments but remains covariance stationary.

As another GARCH process, DGP 9 is a dynamic conditional correlation (DCC) model where the
volatility matrix of εt, Ωt, is defined by

Ωt = DtρtDt,

where Dt = diag(σ1t, σ2t) andσ jt( j = 1, 2) follows GARCH(1,1) with (ψ1, ϕ1) = (ψ2, ϕ2) = (0.1, 0.85)
as in equation (4.3). The conditional correlation matrix ρt is defined as

ρt = diag(Jt)−
1
2 Jt diag(Jt)−

1
2 ,

Jt = (1 − θ1 − θ2)J̄ + θ1st−1sT
t−1 + θ2Jt−1, θ1 = 0.05, θ2 = 0.93,

where J̄ is the unconditional correlation matrix of st = D−1
t εt with corr(s1t, s2t) = 0.5. Engle (2002)

proposed a DCC model that would divide multivariate volatility processes into volatility series σ jts
and the correlation matrix ρt.

The series lengths considered are T = 100 and 200, and the replications are set at 1,000 each.
For each DGP, the adjustment parameter a3 and the cointegration parameter b3 are estimated using
the three methods–FGLS, FML, and RRML. To obtain FML, the log-likelihood in (3.1) is maximized
using the Berndt-Hall-Hall-Hausman (BHHH) algorithm, which is justified under the assumption of
conditional normality (Berndt et al., 1974). Table 2 summarizes the estimators that are computed by
the mean squared errors (MSEs) and the mean absolute errors (MAEs).

The MSEs and MAEs in Table 2 show that estimation precision increases with the sample size,
reflecting consistency of the estimators. It does not make much difference for the ranking of the
estimators whether MSEs or MAEs are considered. A comparison of FGLS (and FML) with RRML
shows that it pays to account for GARCH errors. In almost all DGPs where CH is allowed for, FGLS
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Table 2: Simulation results for estimators of a3 and b3 based on DGPs 1–9: MSE (×10−3) and MAE (×10−2) for
three different estimation methods, FGLS, FML and RRML, based on 1,000 replications for each sample size T

a3 b3
DGP Estimators MSE MAE MSE MAE MSE MAE MSE MAE

T = 100 T = 200 T = 100 T = 200

1
FGLS 4.538 5.313 2.161 3.668 2.454 3.489 0.621 1.784
FML 4.334 5.243 2.098 3.615 2.059 3.252 0.552 1.723

RRML 4.323 5.235 2.110 3.633 1.972 3.197 0.556 1.726

2
FGLS 3.947 4.919 1.852 3.403 2.563 3.507 0.643 1.844
FML 3.971 4.915 1.987 3.503 2.686 3.577 0.679 1.863

RRML 3.895 4.912 1.995 3.514 2.539 3.523 0.703 1.887

3
FGLS 8.899 7.564 4.829 5.467 2.886 3.589 0.529 1.734
FML 9.042 7.506 5.071 5.580 2.832 3.590 0.564 1.784

RRML 9.076 7.535 5.066 5.575 2.703 3.611 0.573 1.793

4
FGLS 4.124 4.923 1.472 3.058 3.166 3.407 0.420 1.509
FML 4.924 5.375 2.137 3.683 3.345 3.787 0.697 1.907

RRML 5.115 5.468 2.350 3.828 3.173 3.704 0.692 1.869

5
FGLS 9.724 7.692 4.327 5.174 2.447 3.348 0.595 1.584
FML 11.945 8.437 6.654 6.337 3.032 3.735 0.963 1.973

RRML 12.146 8.443 6.915 6.409 3.533 3.781 0.801 1.919

6
FGLS 3.522 4.622 1.610 3.157 2.857 3.283 0.612 1.526
FML 5.853 5.734 2.788 3.974 4.420 4.205 1.819 2.671

RRML 6.511 5.871 3.507 4.359 4.045 3.905 0.872 1.966

7
FGLS 10.159 7.917 4.745 5.396 2.045 2.940 0.528 1.541
FML 13.561 9.146 7.669 6.777 3.035 3.658 1.812 2.801

RRML 13.961 9.253 8.400 7.095 2.901 3.394 2.516 2.153

8
FGLS 9.061 7.438 1.901 3.006 3.676 4.824 0.527 1.681
FML 8.845 7.405 1.881 3.021 3.730 4.836 0.548 1.711

RRML 8.709 7.360 1.903 3.041 3.733 4.832 0.571 1.724

9
FGLS 9.004 7.380 1.423 2.696 3.885 4.883 0.365 1.395
FML 8.818 7.339 1.397 2.671 3.843 4.817 0.372 1.421

RRML 8.959 7.360 1.411 2.685 3.823 4.786 0.369 1.409

Note: The underlined bold numbers denote the minimum MSEs or MAEs in estimating a3 and b3.
DGP = data-generating process; MSE = mean squared error; MAE = mean absolute error; FGLS = feasible generalized
least squares; FML = full maximum likelihood estimator; RRML = reduced rank maximum likelihood estimation.

is substantially better than both FML and RRML in terms of MSE and MAE. However, FML seems
to perform at the same level as RRML, even though the former is theoretically better than the latter.

In DGP 1 where there is no CH, FGLS and FML are expected to perform worse than RRML
because of the loss in estimation efficiency associated with these methods. However, poorer perfor-
mance is observed only for the case with T = 100. It is remarkable that FML tends to be superior than
RRML to estimate the parameters, even when there is no CH. It may imply that the estimation of the
VECM parameters are not sensitive to the misspecification of GARCH errors.

Focusing on DGPs 4–7 with GO-GARCH processes, FGLS produces the best performance to
estimate the parameters a3 and b3, irrespective of the sample size. In some cases of DGPs 2 and 3,
FGLS performs worse than FML or RRML when T = 100. We conjecture that, in smaller sample
size, the closer the parameter ϕ j is to zero, the higher the efficiency of FGLS relative to FML and
RRML. This phenomenon may occur because the DGPs have a low (quarterly) frequency. When T =
200, FGLS still shows the best performance. In all cases with GO-GARCH, the positive correlation
between the components (λ > 0) deteriorates the performance of the estimation methods but the sign
of λ has no effect on the ranking of the estimators.

FGLS performs better than ML in estimating the nonstationary parameter DGPs 8 and 9 when
the true GARCH process is not a GO-GARCH type, especially when T = 200. However, FGLS ap-
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Figure 1: Monthly U.S. Housing Starts and Housing Sold (in thousands) for the period January 1975 to December
2007.

pears more sensitive to misspecification of the GARCH structure than ML in estimating the stationary
parameter a3 with smaller sample sizes.

In summary, these observations underpin that the FGLS accounting for CH is overall superior to
ML in terms of MSE and MAE. ML with allowance for CH may produce very unreliable estimates
especially if the GARCH assumption is more complex than the true dynamics of the DGP.

5. An Empirical Example

In this section, an example is provided to model a seasonally cointegrated time series under CH.
We analyze the monthly U.S. Housing Starts y1t and Housing Sold y2t (in thousands) for the period
January 1975 to December 2007 with data obtained from the U.S. Census Bureau. Figure 1 displays
the time series plot of the raw data. We take the natural logarithm of the raw data and identify a model
as a VAR(14) with a constant term as:

(
1 − L12

)
Yt =

7∑
j=1

{(
A jRB jI + A jI B jR

)
W ( j)

t−1 +
(
A jI B jI − A jRB jR

)
V ( j)

t−1

}
+ Ψ1

(
1 − L12

)
Yt−1 + Ψ2

(
1 − L12

)
Yt−2 + δ + εt, (5.1)

where Yt = (log y1t, log y2t)′; the subscript j for j = 1, . . . , 7 corresponds to seven monthly frequencies
θ j = ( j− 1)π/6; A jR, A jI , B′jR, and B′jI are 2× r j matrices; δ is a 2× 1 vector; and W ( j)

t and V ( j)
t are the

monthly filtered series of Yt with all the seasonal unit roots except z j = exp(iθ j) and z̄ j = exp(−iθ j)
for i =

√
−1. Note that the r js denote seasonal cointegrating ranks at frequencies θ j = ( j − 1)π/6 for

j = 1, . . . , 7. Ahn et al. (2004) also analyzed similar time series for illustrating the RRML under the
homoskedastic Gaussian assumption of εt.

As an initial step, in order to examine the possible presence of CH, we conduct Engle’s ARCH test
using the residuals ε̂t = (ε̂1t, ε̂2t)′ from the estimated model in (5.1) with r j = 2 for j = 1, . . . , 7. The
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Table 3: LR statistics and critical values for identifying seasonal cointegrating ranks in (5.1)

j LR statistics Critical values at the 5% level Seasonal cointegrating
r j = 0 r j ≤ 1 r j = 0 r j ≤ 1 ranks identified

1 14.2 0.6 12.3 4.1 1
2 53.1 3.7 20.5 6.2 1
3 51.0 3.8 20.5 6.2 1
4 63.6 24.2 20.5 6.2 2
5 73.3 49.8 20.5 6.2 2
6 71.0 16.8 20.5 6.2 2
7 54.7 22.6 12.3 4.1 2

LR = likelihood ratio.

two obtained p-values, 5.4×10−6 and 7.8×10−4, imply that there exists a statistically significant CH in
the error process. Seasonal cointegrating ranks are identified by computing the likelihood ratio (LR)
statistics (Table 3); see Seong et al. (2006) details. Accordingly, under the 5% level, cointegrating
ranks (r j = 1) are found only at frequencies 0, π/6, and π/3 while full ranks (r j = 2) are found in
other frequencies.

Assuming that εt follows a GO-GARCH in (4.2) and (4.3), we estimate the CH parameters through
the first step explained in Section 3.2 and obtain

σ2
1t = 0.0001

(<0.0001)
+ 0.0457

(0.2121)
e2

1,t−1 + 0.9393
(<0.0001)

σ2
1,t−1,

σ2
2t = 2 × 10−5

(<0.0001)
+ 0.0123

(0.0492)
e2

2,t−1 + 0.9823
(0.0191)

σ2
2,t−1,

where the numbers in parentheses denote the standard errors of the corresponding estimators. The
correlation between the error components is estimated as λ̂ = 0.49

(0.8933)
. It indicates that shocks to

volatility have a persistent effect σ2
1t and σ2

2t since the sums of the ARCH and GARCH coefficients
are close to unity.

Through the second and third steps of Section 3.2, we obtain the FGLS estimators for α and
β, which are based on the ranks (r1, . . . , r7) = (1, 1, 1, 2, 2, 2, 2). Table 4 shows them with their
standard errors in parentheses. We see that a single cointegration vector at the zero frequency exists
as (1,−0.2781)′. At frequency θ j = π/6, the two long-run equilibrium relationships estimated are
(1,−1.0058− 1.0669L)′ and (−L,−1.0669+ 1.0058L)′, which imply polynomial cointegrations at the
annual frequency; in addition, the equilibrium relationships at frequency θ j = π/3 are estimated as
(1,−0.7305−1.3233L)′ and (−L,−1.3233+0.7305L)′. Regarding adjustment parameters A jR and A jI ,
the off-diagonal coefficients at frequencies θ j = ( j − 1)π/6 for j = 4, 5, 6, 7 are not significant under
the 5% level, with the exception of one coefficient in A5I .

This brief example shows that the proposed FGLS procedure enables us to simultaneously model
long-run equilibrium and time-varying volatility in the seasonal VECM. It is also expected that the
FGLS will provide more exact forecasts than ML, because the former produces more reliable estimates
than the latter, especially when the series has a time-varying volatility.

6. Conclusion

In contrast to the case of nonseasonal cointegration, it is not simple to apply the ML method to
seasonal cointegration, especially under CH. In this article, we considered a FGLS procedure for the
estimation of a seasonal VECM with CH. This procedure can be easily implemented using common
methods such as OLS and GLS. We showed that the proposed procedure performs well compared to
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Table 4: FGLS estimators in (5.1) with (r1, . . . , r7) = (1, 1, 1, 2, 2, 2, 2)
j Â jR Â jI B̂′jR B̂′jI

1
−0.0083* 1
(0.0032)
−0.0064 −0.2781*
(0.0033) (0.0089)

2
−0.0490* 0.0165 1 0
(0.0149) (0.0137)
−0.0046 −0.0583* −1.0058* −1.0669*
(0.0150) (0.0137) (0.0589) (0.0616)

3
−0.0652* −0.0077 1 0
(0.0183) (0.0187)
−0.0432* −0.0836* −0.7305* −1.3233*
(0.0184) (0.0188) (0.0968) (0.0959)

4
−0.1046* −0.0117 0.0145 0.0427
(0.0267) (0.0292) (0.0267) (0.0290)
−0.0233 −0.1357* −0.0430 0.1282*
(0.0266) (0.0300) (0.0266) (0.0297)

5
−0.0987* −0.0265 0.0334 0.0843*
(0.0231) (0.0335) (0.0239) (0.0354)
−0.0162 −0.2169* 0.0317 0.0984*
(0.0236) (0.0349) (0.0244) (0.0371)

6
−0.1695* 0.0486 0.0303 −0.0368
(0.0307) (0.0309) (0.0306) (0.0311)
0.0565 −0.1357* −0.0196 0.0562

(0.0313) (0.0320) (0.0314) (0.0324)

7
0.1153* 0.0594

(0.0223) (0.0315)
0.0045 0.1654*

(0.0227) (0.0332)

Note: 1. Ψ̂1 =

[
0.0045 0.1573∗
0.0963∗ 0.1714∗

]
, se

(
Ψ̂1

)
=

[
0.0267 0.0292
0.0266 0.0300

]
2. Ψ̂2 =

[
0.2594∗ 0.0448
0.0366 0.0324

]
, se

(
Ψ̂2

)
=

[
0.0239 0.0354
0.0244 0.0371

]
3. δ̂ =

(
0.3436∗
0.3316∗

)
, se

(
δ̂
)
=

(
0.1200
0.1186

)
, Ω̂ =

[
67.92 22.03
22.03 89.09

]
× 10−4

4. * denotes significance at the 5% level, and the numbers in parentheses denote standard errors of the upper estimators.
FGLS = feasible generalized least squares.

the ML method and we illustrated the procedure with monthly time series data that uses a small-scale
Monte Carlo simulation.
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