• Title/Summary/Keyword: Combined Solving Method

Search Result 133, Processing Time 0.025 seconds

Effects of Problem-Based Learning Combined with Simulation on the Basic Nursing Competency of Nursing Students (시뮬레이션 연계 문제중심학습이 간호학생의 간호기본역량에 미치는 효과)

  • Lee, Woo-Sook;Cho, Kap-Chul;Yang, Sun-Hee;Roh, Young-Sook;Lee, Gyu-Young
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.16 no.1
    • /
    • pp.64-72
    • /
    • 2009
  • Purpose: The objective of this study was to identify the effects of problem based learning (PBL) combined with simulation on the basic nursing competency of nursing students. Method: A pretest-posttest design with a nonequivalent control group was used to examine the effects of problem based learning combined with simulation for 9 weeks in a group of 283 nursing students. The PBL group of 141 students participated in PBL classes with simulation, 4 hours a week for 9 weeks compared to control group of 142 students who received the usual fundamental nursing class. Results: The group that had PBL with simulation showed significant increases in problem solving and self-directed learning competency, although there were no significant changes in communication competency as compared to the control group. Conclusion: The findings of this study demonstrate that PBL with simulation for nursing students may increase problem solving and self-directed learning competency and suggest that utilizing this teaching-learning method may be beneficial as an effective nursing education strategy.

  • PDF

APPLICATION OF EXP-FUNCTION METHOD FOR A CLASS OF NONLINEAR PDE'S ARISING IN MATHEMATICAL PHYSICS

  • Parand, Kourosh;Amani Rad, Jamal;Rezaei, Alireza
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.763-779
    • /
    • 2011
  • In this paper we apply the Exp-function method to obtain traveling wave solutions of three nonlinear partial differential equations, namely, generalized sinh-Gordon equation, generalized form of the famous sinh-Gordon equation, and double combined sinh-cosh-Gordon equation. These equations play a very important role in mathematical physics and engineering sciences. The Exp-Function method changes the problem from solving nonlinear partial differential equations to solving a ordinary differential equation. Mainly we try to present an application of Exp-function method taking to consideration rectifying a commonly occurring errors during some of recent works.

COMBINED LAPLACE TRANSFORM WITH ANALYTICAL METHODS FOR SOLVING VOLTERRA INTEGRAL EQUATIONS WITH A CONVOLUTION KERNEL

  • AL-SAAR, FAWZIAH M.;GHADLE, KIRTIWANT P.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.22 no.2
    • /
    • pp.125-136
    • /
    • 2018
  • In this article, a homotopy perturbation transform method (HPTM) and the Laplace transform combined with Taylor expansion method are presented for solving Volterra integral equations with a convolution kernel. The (HPTM) is innovative in Laplace transform algorithm and makes the calculation much simpler while in the Laplace transform and Taylor expansion method we first convert the integral equation to an algebraic equation using Laplace transform then we find its numerical inversion by power series. The numerical solution obtained by the proposed methods indicate that the approaches are easy computationally and its implementation very attractive. The methods are described and numerical examples are given to illustrate its accuracy and stability.

THE COMBINED MODIFIED LAPLACE WITH ADOMIAN DECOMPOSITION METHOD FOR SOLVING THE NONLINEAR VOLTERRA-FREDHOLM INTEGRO DIFFERENTIAL EQUATIONS

  • HAMOUD, AHMED A.;GHADLE, KIRTIWANT P.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.1
    • /
    • pp.17-28
    • /
    • 2017
  • A combined form of the modified Laplace Adomian decomposition method (LADM) is developed for the analytic treatment of the nonlinear Volterra-Fredholm integro differential equations. This method is effectively used to handle nonlinear integro differential equations of the first and the second kind. Finally, some examples will be examined to support the proposed analysis.

Preconditioning Method of a Finite Element Combined Formulation for Fluid-Structure Interaction (유체-구조물 상호작용을 위한 유한요소 결합공식화의 예조건화에 대한 연구)

  • Choi, Hyoung-Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.4
    • /
    • pp.242-247
    • /
    • 2009
  • AILU type preconditioners for a two-dimensional combined P2P1 finite element formulation of the interaction of rigid cylinder with incompressible fluid flow have been devised and tested by solving fluid-structure interaction (FSI) problems. The FSI code simulating the interaction of a rigid cylinder with an unsteady flow is based on P2P1 mixed finite element formulation coupled with combined formulation. Four different preconditioners were devised for the two-dimensional combined P2P1 finite element formulation extending the idea of Nam et al., which was proposed for the preconditioning of a P2P1 mixed finite element formulation of the incompressible Navier-Stokes equations. It was found that PC-III or PC-IV among them perform well with respect to computational memory and convergence rate for some bench-mark problems.

Modal Parameter Sensitivity Analysis Using Component Mode Synthesis Method (부분 구조물의 모드 합성을 이용한 구조물 모드 매개변수의 민감도 해석)

  • 김형중;박윤식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.184-191
    • /
    • 1997
  • A method, termed as the substructural sensitivity synthesis method, which utilizes the computational merits of the component mode synthesis technique is proposed to calculate design sensitivity of modal parameters of substructurally combined structures. In this method, the sensitivity analysis is combined with component mode synthesis thchnique. thus the degrees of freedom of a combined structure can be dramatically reduced. Free-interface mode method including the residual attachment modes among the component mode synthesis methods is used to calculate the modal sensitivity of the combined structure. For the design sensitivities of modal properties of structure, the Nelson's method, which is exact solving method is used. It is shown that the modal sensitivities of the entire structure can be obtained by synthesizing the substructural modal data, and the sensitivities of the modal data about the design variables of modifiable substructure. Using the proposed method, the final degrees of freedom of entire structure can be remarkably reduced to calculate the modal parameter sensitivities. With a structure composed of beams and plates, as an example, the sensitivities of the eigenvalues and eigenvectors obtained by this proposed method were compared with the exact solutions in terms of accuracy.

  • PDF

Ethical Problem Solving in Engineering: Matrix Guide (공학 분야의 윤리적 문제해결방법: 매트릭스 가이드)

  • Han, Kyong-Hee;Heo, Jun-Haeng;Yun, Il-Gu;Lee, Kang-Taek;Kang, Ho-Jeong
    • Journal of Engineering Education Research
    • /
    • v.15 no.1
    • /
    • pp.61-71
    • /
    • 2012
  • The core issue of ethical problem solving in engineering is to understand what exactly happened and to define its nature. Problems often arise mostly in morally complex situations. Traditional philosophical theories usually focus on extreme conflicts of interest and suggest moral theory-centered problem solving methods. However, these methods are not only difficult to specifically apply to real situations, but also are likely to fail to deal with actual moral issues in engineering fields. This study aims to develop more desirable ethical problem solving methods, based on STS (Science and Technology Studies) and engineering ethics combined. First, we have examined the engineering ethics with implications of an STS perspective, then have analyzed traditional ethical problem solving methods in a critical point of view. This study will suggest a new ethical problem solving method named Matrix Guide, based upon those analyses. Specifically, this study classifies four stages of problem definition, analysis, solving, and feedback. Here, we focus on how to combine technological and non-technological factors in each stage, when we are facing morally complex situations in engineering sectors.

SOLVING SECOND ORDER SINGULARLY PERTURBED DELAY DIFFERENTIAL EQUATIONS WITH LAYER BEHAVIOR VIA INITIAL VALUE METHOD

  • GEBEYAW, WONDWOSEN;ANDARGIE, AWOKE;ADAMU, GETACHEW
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.3_4
    • /
    • pp.331-348
    • /
    • 2018
  • In this paper, an initial value method for solving a class of singularly perturbed delay differential equations with layer behavior is proposed. In this approach, first the given problem is modified in to an equivalent singularly perturbed problem by approximating the term containing the delay using Taylor series expansion. Then from the modified problem, two explicit Initial Value Problems which are independent of the perturbation parameter, ${\varepsilon}$, are produced: the reduced problem and boundary layer correction problem. Finally, these problems are solved analytically and combined to give an approximate asymptotic solution to the original problem. To demonstrate the efficiency and applicability of the proposed method three linear and one nonlinear test problems are considered. The effect of the delay on the layer behavior of the solution is also examined. It is observed that for very small ${\varepsilon}$ the present method approximates the exact solution very well.

THE RELIABLE MODIFIED OF LAPLACE ADOMIAN DECOMPOSITION METHOD TO SOLVE NONLINEAR INTERVAL VOLTERRA-FREDHOLM INTEGRAL EQUATIONS

  • Hamoud, Ahmed A.;Ghadle, Kirtiwant P.
    • Korean Journal of Mathematics
    • /
    • v.25 no.3
    • /
    • pp.323-334
    • /
    • 2017
  • In this paper, we propose a combined form for solving nonlinear interval Volterra-Fredholm integral equations of the second kind based on the modifying Laplace Adomian decomposition method. We find the exact solutions of nonlinear interval Volterra-Fredholm integral equations with less computation as compared with standard decomposition method. Finally, an illustrative example has been solved to show the efficiency of the proposed method.

Radiative Heat Transfer in Discretely Heated Irregular Geometry with an Absorbing, Emitting, and An-isotropically Scattering Medium Using Combined Monte-Carlo and Finite Volume Method (몬테카를로/유한체적결합법에 의한 국소 가열되는 복잡한 형상에서의 흡수, 방사, 비등방산란 매질에 대한 복사열전달 해석)

  • Byun, Do-Young;Lee, Chang-Jin;Chang, Seon-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.580-586
    • /
    • 2004
  • The ray effects of finite volume method (FVM) or discrete ordinate method (DOM) are known to show a non-physical oscillation in solution of radiative heat transfer on a boundary. This wiggling behavior is caused by the finite discretization of the continuous control angle. This article proposes a combined procedure of the Monte-Carlo and finite-volume method (CMCFVM) for solving radiative heat transfer in absorbing, emitting, and an-isotropically scattering medium with an isolated boundary heat source. To tackle the problem, which is especially pronounced in a medium with an isolated heat source, the CMCFVM is suggested here and successfully applied to a two-dimensional circular geometry.