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APPLICATION OF EXP-FUNCTION METHOD FOR A CLASS

OF NONLINEAR PDE’S ARISING IN MATHEMATICAL

PHYSICS
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Abstract. In this paper we apply the Exp-function method to obtain
traveling wave solutions of three nonlinear partial differential equations,
namely, generalized sinh-Gordon equation, generalized form of the famous
sinh-Gordon equation, and double combined sinh-cosh-Gordon equation.
These equations play a very important role in mathematical physics and
engineering sciences. The Exp-Function method changes the problem from
solving nonlinear partial differential equations to solving a ordinary differ-
ential equation. Mainly we try to present an application of Exp-function
method taking to consideration rectifying a commonly occurring errors
during some of recent works.
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1. Introduction

The study of exact traveling wave solutions of nonlinear partial differential
equations (NPDE) plays an important role in mathematical physics, engineer-
ing and the other sciences. The wave phenomena are observed in plasma, kink
dynamics, fluid dynamics, elastic media, etc. In the past several decades, vari-
ous methods for obtaining solutions of NPDEs and ODEs have been presented,
such as , tanh-function method [44, 46, 45], Adomian decomposition method
[18, 40], Homotopy perturbation method [32, 7, 5], variational iteration method
[34, 37, 14], spectral method [28, 29, 27], sine-cosine method [39, 42], radial
basis method [41, 10] and so on. Recently, He and Wu [20] proposed a novel
method, so called Exp-function method, which is easy, succinct and powerful
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to implement to nonlinear partial differential equations arising in mathematical
physics. The Exp-function method has been successfully applied to many kinds
of NPDEs, such as, KdV equation with variable coefficients [50], Maccari’s sys-
tem [51], Kawahara equation [4], Boussinesq equations [1], Burger’s equations
[12, 6, 13], Double Sine-Gordon equation [11, 19], Fisher equation [26], Jaulent-
Miodek equations [22] and the other important nonlinear partial differential
equations [9, 35, 52]. In this paper we apply the Exp-function method [20] to
obtain exact solutions of three nonlinear partial differential equations, namely,
generalized sinh-Gordon equation, generalized form of the famous sinh-Gordon
equation, and double combined sinh-cosh-Gordon equation given by

utt − auxx + b sinh(nu) = 0 , n ≥ 1

uxt + b sinh(nu) = 0 , n ≥ 1

utt −muxx + α sinh(u) + α cosh(u) + β sinh(2u) + β cosh(2u) = 0 .

respectively.
It is well known that the sinh-Gordon type equations admits geometric in-

terpretation as the differential equation which determines time-like surfaces of
constant positive curvature in the same spaces [16, 33]. This type equations are
known to be completely integrable because it possesses similarity reductions to
the third Painlevé equation [43, 17, 8]. The sinh-Gordon type equations ap-
pear in wide range of physical applications including fluid flow, relativistic field
theory, string dynamics, hydrodynamics, quantum field theory, kink dynam-
ics, fluid dynamics, thermodynamics, differential geometry, solid-state physics,
dislocations in metals and nonlinear optics [38, 3, 36, 15, 47, 24, 31, 2, 43].
Also, sinh-Gordon equation appeared in the propagation of fluxons in Joseph-
son junctions [30] between two superconductors. Sinh-Gordon type equations
have been investigated with analytical and numerical methods by some authors
[44, 45, 33, 8, 36, 48, 49]. Recently, Wazwaz [44, 46, 45, 43] studied the gen-
eralized sinh-Gordon type equations by using the tanh method and a variable
separated ODE method. He derived families of exact traveling wave solutions of
them. Also, Sirendaoreji [36] applied a direct method for solving sinh-Gordon
equation. Hu et. al.[23] solved sinh-Gordon by the complex multi-symplectic
scheme.
The rest of the paper is organized as follows: Section 2 describes Exp-function
method for finding exact traveling wave solutions to the NPDEs. The applica-
tions of the proposed analytical scheme presented in Section 3. The conclusions
are discussed in the section 4.

2. Summary of Exp-function method

We consider a general nonlinear PDE in the following form

N(u, ux, ut, uxx, utt, uxt, ...) = 0 , (1)
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where N is a polynomial function with respect to the indicated variables or
some functions which can be reduced to a polynomial function by using some
transformation. We introduce a complex variation as

u(x, t) = U(η) , η = k(x− ct) + ϕ0 . (2)

where k and c are constants and ϕ0 is an arbitrary constant. We can rewrite
Eq.(1) in the following nonlinear ordinary differential equations

N(U, kU ′,−kcU ′, k2U ′′, ...) = 0 ,

where the prime denotes the derivative with respect to η. According to the
Exp-function method [20], we assume that the solution can be expressed in the
form

U(η) =

∑f
i=−d ai exp(iη)∑p
j=−q bj exp(jη)

, (3)

where f , d, p and q are positive integers which can be freely chosen, ai and bj
are unknown constants to be determined. To determine the values of f and p,
we balance the highest order linear term with the highest order nonlinear term
in Eq.(3). Similarly, to determine the values of d and q. So by means of the Exp-
function method, we obtain the traveling wave solution for nonlinear evolution
equations arising in mathematical physics.

3. Applications of Exp-function method

3.1.The generalized sinh-Gordon equation. Let us consider the generalized
sinh-Gordon equation [44, 45] in the form

utt − auxx + b sinh(nu) = 0 . (4)

By using the complex variation

u(x, t) = U(η) , η = k(x− ct) + ϕ0 , (5)

where k and c are constants to be determined later and ϕ0 is an arbitrary
constant, Eq.(4) can be converted to the ODE

k2(c2 − a)U ′′ + b sinh(nU) = 0 ,

where the prime denotes the derivative with respect to η. Now, using the
Painlevé transformation,

v(η) = enU(η) , (6)

we have

U ′ =
1

nv
v′ ,

U ′′ =
1

nv
v′′ − 1

nv2
(v′)2 . (7)
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By using Eq.(6) we have

sinh(nU) =
v − v−1

2
, cosh(nU) =

v + v−1

2
, (8)

and

U =
1

n
arccosh

(
v + v−1

2

)
. (9)

Substituting the transformations (7) into the sinh-Gordon equation gives the
ODE,

2k2(c2 − a)vv′′ − 2k2(c2 − a)(v′)2 + nbv3 − nbv = 0 , (10)

According to the Exp-function method [20, 19, 21], we assume that the solution
of Eq.(10) can be expressed in the form

v(η) =
af exp(fη) + ...+ a−d exp(−dη)

bp exp(pη) + ...+ b−q exp(−qη)
,

where f , d, p and q are positive integers which are unknown to be determined
later. In order to determine values of f and p, we balance the linear term of the
highest order with the highest order nonlinear terms in Eq.(10), i.e. vv′′ and v3.
By simplify calculation, we have

vv′′ =
c1 exp[(2f + 3p)η] + ...

c2 exp[5pη] + ...
, (11)

and

v3 =
c3 exp[(3f + p)η] + ...

c4 exp[4pη] + ...
=

c3 exp[(3f + 2p)η] + ...

c4 exp[5pη] + ...
, (12)

where ci are coefficients only for simplicity. By balancing highest order of Exp-
function in Eqs.(11) and (12), we have

3f + 2p = 2f + 3p ,

which leads to the result

p = f .

Similarly, to determine values of d and q, we balance the linear term of lowest
order in Eq.(10)

vv′′ =
...+ d1 exp[−(3q + 2d)η]

...+ d2 exp[−5qη]
, (13)

and

v3 =
...+ d3 exp[−(q + 3d)η]

...+ d4 exp[−4qη]
=

...+ d3 exp[−(2q + 3d)η]

...+ d4 exp[−5qη]
, (14)

where di are determined coefficients only for simplicity, we have

−(2q + 3d) = −(3q + 2d) ,
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which leads to results

q = d .

For simplicity, we set p = f = 1 and q = d = 1, so Eq.(3) reduces to

v(η) =
a1 exp(η) + a0 + a−1 exp(−η)

exp(η) + b0 + b−1 exp(−η)
. (15)

Substituting Eq.(15) into Eq.(10) and equating to zero the coefficients of all
powers of exp(nη), yields a set of algebraic equations in terms of a0, b0, a−1, a1,
b1, k and c. To determine the unknowns we can solve the obtained system of
algebraic equations by a symbolic professional mathematical software

case 1. 



a1 = 1, b−1 = 1
4b

2
0,

a0 = −b0, b0 = b0,

a−1 = 1
4b

2
0, k =

√
nb

a−c2 .

Substituting these result into Eq.(15), we obtain

v(x, t) =
exp[

√
nb

a−c2 (x− ct) + ϕ0]− b0 +
1
4b

2
0 exp[−

√
nb

a−c2 (x− ct) + ϕ0]

exp[
√

nb
a−c2 (x− ct) + ϕ0] + b0 +

1
4b

2
0 exp[−

√
nb

a−c2 (x− ct) + ϕ0]
. (16)

where b0, c and ϕ0 are free parameters which can be determined by initial or
boundary conditions. These results cover some of special solutions of Eq.(4)
regarding to initial value conditions. By considering u(x, 0) as a initial value
condition, we have




utt − auxx + b sinh(nu) = 0 ,

u(x, 0) = 1
narccosh

{
1
2

(
tanh2

[
1
2

√
nb

a−c2x

]
+ coth2

[
1
2

√
nb

a−c2x

])}
.

(17)

From Eq.(17) and Eq.(16), we obtain

b0 = 2 , ϕ0 = 0 , (18)

Thus, from substituting Eq.(18) into Eq.(16), we obtain

v(x, t) =
exp[

√
nb

a−c2 (x− ct)]− 2 + exp[−
√

nb
a−c2 (x− ct)]

exp[
√

nb
a−c2 (x− ct)] + 2 + exp[−

√
nb

a−c2 (x− ct)]
.

or equivalently,

v(x, t) = tanh2

[
1

2

√
nb

a− c2
(x− ct)

]
.
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By Eq.(9), we can obtain the solution

u(x, t) =
1

n
arccosh

{
1

2

(
tanh

2

[
1

2

√
nb

a − c2
(x − ct)

]
+ coth

2

[
1

2

√
nb

a − c2
(x − ct)

])}
.

which is the traveling wave solution obtained by tanh method in [44, 45].
If Eq.(4) be in the following form





utt − auxx + b sinh(nu) = 0 ,

u(x, 0) = 1
narccosh

{
− 1

2

(
tan2

[
1
2

√
nb

c2−ax

]
+ cot2

[
1
2

√
nb

c2−ax

])}
.

(19)

then taking to account Eq.(16), we can obtain

b0 = −2 , ϕ0 = 0 , (20)

Thus, substituting Eq.(20) into Eq.(16), we have

v(x, t) =
exp[−i

√
nb

c2−a (x− ct)]− 2 + exp[i
√

nb
c2−a (x− ct)]

exp[−i
√

nb
c2−a (x− ct)] + 2 + exp[i

√
nb

c2−a (x− ct)]
.

or equivalently,

v(x, t) = − tan2

[
1

2

√
nb

c2 − a
(x− ct)

]

By Eq.(9), we can obtain the solution

u(x, t) =
1

n
arccosh

{
− 1

2

(
tan

2

[
1

2

√
nb

c2 − a
(x − ct)

]
+ cot

2

[
1

2

√
nb

c2 − a
(x − ct)

])}
.

which is the traveling wave solution obtained by tanh method in [44, 45] and
complex multi-symplectic method in [23].

case 2.




a1 = −1, b−1 = 1
4b

2
0,

a0 = b0, b0 = b0,

a−1 = − 1
4b

2
0, k =

√
nb

c2−a .

Substituting these result into Eq.(15), we obtain

v(x, t) = −
exp[

√
nb

c2−a
(x− ct) + ϕ0]− b0 + 1

4
b20 exp[−

√
nb

c2−a
(x− ct) + ϕ0]

exp[

√
nb

c2−a
(x− ct) + ϕ0] + b0 + 1

4
b20 exp[−

√
nb

c2−a
(x− ct) + ϕ0]

.
(21)
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where b0, c and ϕ0 are free parameters which can be determined by initial or
boundary conditions. If Eq.(4) be in the following form




utt − auxx + b sinh(nu) = 0 ,

u(x, 0) = 1
narccosh

{
− 1

2

(
tanh2

[
1
2

√
nb

a−c2x

]
+ coth2

[
1
2

√
nb

a−c2x

])}
.

(22)

then, taking to account Eq.(21), we can obtain

b0 = 2 , ϕ0 = 0 , (23)

Thus, substituting Eq.(23) into Eq.(21), we have:

v(x, t) = −
exp[

√
nb

c2−a (x− ct)]− 2 + exp[−
√

nb
c2−a (x− ct)]

exp[
√

nb
c2−a (x− ct)] + 2 + exp[−

√
nb

c2−a (x− ct)]
.

or equivalently,

v(x, t) = − tanh2

[√
nb

c2 − a
(x− ct)

]
,

By Eq.(9), we can obtain the solution

u(x, t) =
1

n
arccosh

{
− 1

2

(
tanh

2

[
1

2

√
nb

a − c2
(x − ct)

]
+ coth

2

[
1

2

√
nb

a − c2
(x − ct)

])}
.

which is the traveling wave solution obtained by tanh method in [44, 45] and
complex multi-symplectic method in [23].
If Eq.(4) be in the following form




utt − auxx + b sinh(nu) = 0 ,

u(x, 0) = 1
n
arccosh

{
− 1

2

(
tanh2

[
1
2

√
nb

a−c2
x

]
+ coth2

[
1
2

√
nb

a−c2
x

])}
.

(24)

then, taking to account Eq.(21), we can obtain

b0 = 2 , ϕ0 = 0 , (25)

Thus, substituting Eq.(25) into Eq.(21), we have:

v(x, t) = −
exp[−i

√
nb

c2−a (x− ct)]− 2 + exp[i
√

nb
c2−a (x− ct)]

exp[−i
√

nb
c2−a (x− ct)] + 2 + exp[i

√
nb
c2 (x− ct)]

.

or equivalently,

v(x, t) = tan2

[
1

2

√
nb

c2 − a
(x− ct)

]
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By Eq.(9), we can obtain the solution

u(x, t) =
1

n
arccosh

{
1

2

(
tan2

[
1

2

√
nb

c2 − a
(x− ct)

]
+ cot2

[
1

2

√
nb

c2 − a
(x− ct)

])}
.

which is the traveling wave solution obtained by tanh method in [44, 45].

3.2.The generalized famous sinh-Gordon equation. Now we consider the
generalized famous sinh-Gordon equation [44, 45, 8, 36]

uxt + b sinh(nu) = 0 . (26)

Using the transformation (2), Eq.(26) becomes

−k2cU ′′ + b sinh(nU) = 0 .

where prime denotes the differential with respect to η. Proceeding as before
subsection we use the transformation (6), Eqs.(7, 8 and 9) gives

− 2k2cvv′′ + 2k2c(v′)2 + nbv3 − nbv = 0 (27)

The highest nonlinear term vv′′ is now given by

vv′′ =
c1 exp[(2f + 3p)η] + ...

c2 exp[5pη] + ...
, (28)

and the highest linear term v3 is given by

v3 =
c3 exp[(3f + p)η] + ...

c4 exp[4pη] + ...
=

c3 exp[(3f + 2p)η] + ...

c4 exp[5pη] + ...
. (29)

Balancing the highest order of Exp-function in Eqs.(28) and (29), we have 2f +
3p = 3f +2p, so p = f . As mentioned in the previous subsection, we can obtain
q = d. Here, we only consider the simplest case p = f = 1 and q = d = 1, so
Eq.(3) reduces to

v(η) =
a1 exp(η) + a0 + a−1 exp(−η)

exp(η) + b0 + b−1 exp(−η)
. (30)

Substituting Eq.(30) into Eq.(27) and equating to zero the coefficients of all
powers of exp(nη) yields a set of algebraic equations in term of a0, b0, a−1, a1,
b1, k and c. To determine the unknowns we can solve the obtained system of
algebraic equations by a symbolic professional mathematical software

case 1. 



a1 = 1, b−1 = 1
4b

2
0,

a0 = −b0, b0 = b0,

a−1 = 1
4b

2
0, k =

√
nb
c .
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Substituting these result into Eq.(30), we obtain

v(x, t) =
exp[

√
nb
c (x− ct) + ϕ0]− b0 +

1
4b

2
0 exp[−

√
nb
c (x− ct) + ϕ0]

exp[
√

nb
c (x− ct) + ϕ0] + b0 +

1
4b

2
0 exp[−

√
nb
c (x− ct) + ϕ0]

. (31)

where b0, c and ϕ0 are free parameters. If Eq.(26) be in the following form




uxt + b sinh(nu) = 0 ,

u(x, 0) = 1
narccosh

{
1
2

(
tanh2

[
1
2

√
nb
c x

]
+ coth2

[
1
2

√
nb
c x

])}
.

(32)

then, taking to account Eq.(31), we can obtain

b0 = 2 , ϕ0 = 0 , (33)

Thus, substituting Eq.(33) into Eq.(31), we have:

v(x, t) =
exp[

√
nb
c (x− ct)]− 2 + exp[−

√
nb
c (x− ct)]

exp[
√

nb
c (x− ct)] + 2 + exp[−

√
nb
c (x− ct)]

.

or equivalently,

v(x, t) = tanh2

[
1

2

√
nb

c
(x− ct)

]
,

By Eq.(9), we can obtain the solution

u(x, t) =
1

n
arccosh

{
1

2

(
tanh2

[
1

2

√
nb

c
(x− ct)

]
+ coth2

[
1

2

√
nb

c
(x− ct)

])}
.

which is the traveling wave solution obtained by tanh method in [44, 45].
Also, if Eq.(26) be in the following form




uxt + b sinh(nu) = 0 ,

u(x, 0) = 1
narccosh

{
− 1

2

(
tan2

[
1
2

√
−nb

c x

]
+ cot2

[
1
2

√
−nb

c x

])}
.

(34)

then, taking to account Eq.(31), we can obtain

b0 = 2 , ϕ0 = 0 , (35)

Thus, substituting Eq.(35) into Eq.(31), we have:

v(x, t) =
exp[−i

√
−nb

c (x− ct)]− 2 + exp[i
√
−nb

c (x− ct)]

exp[−i
√
−nb

c (x− ct)] + 2 + exp[i
√
−nb

c (x− ct)]
.
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or equivalently,

v(x, t) = − tan2

[
1

2

√
−nb

c
(x− ct)

]
,

By Eq.(9), we can obtain the solution

u(x, t) =
1

n
arccosh

{
− 1

2

(
tan2

[
1

2

√
−nb

c
(x− ct)

]
+ cot2

[
1

2

√
−nb

c
(x− ct)

])}
.

which is the traveling wave solution obtained by tanh method in [44, 45].
case 2. 




a1 = −1, b−1 = 1
4b

2
0,

a0 = b0, b0 = b0,

a−1 = − 1
4b

2
0, k =

√
−nb

c .

Substituting these result into Eq.(30), we obtain

v(x, t) = −
exp[

√
−nb

c (x− ct) + ϕ0]− b0 +
1
4b

2
0 exp[−

√
−nb

c (x− ct) + ϕ0]

exp[
√
−nb

c (x− ct) + ϕ0] + b0 +
1
4b

2
0 exp[−

√
−nb

c (x− ct) + ϕ0]
. (36)

where b0, c and ϕ0 are free parameters. If Eq.(26) be in the following form




uxt + b sinh(nu) = 0 ,

u(x, 0) = 1
narccosh

{
− 1

2

(
tanh2

[
1
2

√
−nb

c x

]
+ coth2

[
1
2

√
−nb

c x

])}
,

(37)

then, taking to account Eq.(36), we can obtain

b0 = 2 , ϕ0 = 0 , (38)

Thus, substituting Eq.(38) into Eq.(36), we have:

v(x, t) = −
exp[

√
−nb

c (x− ct)]− 2 + exp[−
√
−nb

c (x− ct)]

exp[
√
−nb

c (x− ct)] + 2 + exp[−
√
−nb

c (x− ct)]
.

or equivalently,

v(x, t) = − tanh2

[
1

2

√
−nb

c
(x− ct)

]
,

By Eq.(9), we can obtain the solution

u(x, t) =
1

n
arccosh

{
− 1

2

(
tanh2

[
1

2

√
−nb

c
(x− ct)

]
+ coth2

[
1

2

√
−nb

c
(x− ct)

])}
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which is the traveling wave solution obtained by tanh method in [44, 45].
Also, if Eq.(26) be in the following form





uxt + b sinh(nu) = 0 ,

u(x, 0) = 1
narccosh

{
1
2

(
tan2

[
1
2

√
nb
c x

]
+ cot2

[
1
2

√
nb
c x

])}
.

(39)

then, taking to account Eq.(36), we can obtain

b0 = 2 , ϕ0 = 0 , (40)

Thus, substituting Eq.(40) into Eq.(36), we have:

v(x, t) = −
exp[i

√
nb
c (x− ct)]− 2 + exp[−i

√
nb
c (x− ct)]

exp[i
√

nb
c (x− ct)] + 2 + exp[−i

√
nb
c (x− ct)]

.

or equivalently,

v(x, t) = tan2

[
1

2

√
nb

c
(x− ct)

]
, (41)

By Eq.(9), we can obtain the solution

u(x, t) =
1

n
arccosh

{
1

2

(
tan2

[
1

2

√
nb

c
(x− ct)

]
+ cot2

[
1

2

√
nb

c
(x− ct)

])}
.

which is the traveling wave solution obtained by tanh method in [44, 45].
Also, if we set b = −1, n = 1 and c = − 4

a2 in the Eq.(41), where a is free
parameter, then gives

u(x, t) = 2 ln

[
tan

(
a

4
x+

t

a
+ ϕ0

)]
,

which is the solution obtained in [8, 36].

3.3.The double combined sinh-cosh-Gordon equation. In this section, we
examine the double combined sinh-cosh-Gordon equation given by [46]

utt −muxx + α sinh(u) + α cosh(u) + β sinh(2u) + β cosh(2u) = 0 . (42)

The transformation (5) converts Eq.(42) into the nonlinear ODE:

k2(c2 −m)U ′′ + α sinh(U) + α cosh(U) + β sinh(2U) + β cosh(2U) = 0 .

We can use the transformations

v = eU ,

or

U = ln(v) .
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so we have

sinh(U) =
v − v−1

2
, cosh(U) =

v + v−1

2
,

sinh(2U) =
v2 − v−2

2
, cosh(2U) =

v2 + v−2

2
, (43)

that also give

U = arccosh

(
v + v−1

2

)
.

Substituting the transformations (43) into the sinh-cosh-Gordon equation gives
the ODE,

2k2(c2 −m)vv′′ − 2k2(c2 −m)(v′)2 + 2αv3 + 2βv4 = 0 .

We assume that the solutions can be expressed in the following forms [20]

v(η) =
af exp(fη) + ...+ a−d exp(−dη)

bp exp(pη) + ...+ b−q exp(−qη)
,

where f , d, p and q are positive integers which are unknown to be determined
later. By balancing linear term of highest order (v4) and balancing the highest
order nonlinear term (vv′′) we have

vv′′ =
c1 exp[(2f + 3p)η] + ...

c2 exp[5pη] + ...
, (44)

and

v4 =
c3 exp[(4f + p)η] + ...

c4 exp[5pη] + ...
. (45)

where ci are coefficients only for simplicity. Balancing the highest order of the
Exp-function in Eqs.(44) and (45), we have

4f + p = 2f + 3p ,

which leads to the result

f = p .

Similarly, to determine valuee of d and q, we balance the linear term of the lowest
order in Eqs.(44) and (45)

vv′′ =
...+ d1 exp[−(3q + 2d)η]

...+ d2 exp[−5qη]
, (46)

and

v4 =
...+ d3 exp[−(2q + 3d)η]

...+ d4 exp[−5qη]
. (47)

where di are determined coefficients only for simplicity, we have

−(3q + 2d) = −(2q + 3d) ,
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which leads to results

q = d .

For simplicity, we set p = f = 1 and q = d = 1, so Eq.(3) reduces to

v(η) =
a1 exp(η) + a0 + a−1 exp(−η)

exp(η) + b0 + b−1 exp(−η)
. (48)

Substituting Eq.(48) into Eq.(42) and equating to zero the coefficients of all
powers of exp(nη) yields a set of algebraic equations in terms of a0, b0, a−1, a1,
b1, k and c. To determine the unknowns we can solve the obtained system of
algebraic equations by a symbolic professional mathematical software

a1 = 0, a0 = 0, a−1 = a−1,

b0 = 0, b−1 = −β

α
a−1, k = ± α

2
√
β(m− c2)

.

Substituting these result into Eq.(30), we obtain

v(x, t) =
a−1 exp[± α

2
√

β(m−c2)
(x− ct)]

exp[± α

2
√

β(m−c2)
(x− ct)]− β

αa−1 exp[± α

2
√

β(m−c2)
(x− ct)]

. (49)

To compare our results with those obtained in [46], we present the following
discussion

I. At k = ± α

2
√

β(m−c2)
, a−1 = −α

β

According to Eq.(49) we can obtain

v(x, t) = − α

2β

(
1∓ tanh

[
α

2
√
β(m− c2)

(x− ct)

])
, β(m− c2) > 0

II. At k = ± α

2
√

β(m−c2)
, a−1 = α

β

According to Eq.(49) we can obtain

v(x, t) = − α

2β

(
1∓ coth

[
α

2
√
β(m− c2)

(x− ct)

])
, β(m− c2) > 0

Recall that

U = arccosh

(
v + v−1

2

)
.
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therefore, we can obtain the solutions

u(x, t) = arccosh

[
1

2

(
− α

2β

(
1∓ tanh

[
α

2
√
β(m− c2)

(x− ct)

])

− 2β

α

(
1∓ tanh

[
α

2
√

β(m−c2)
(x− ct)

])
)]

,

and

u(x, t) = arccosh

[
1

2

(
− α

2β

(
1∓ coth

[
α

2
√
β(m− c2)

(x− ct)

])

− 2β

α

(
1∓ coth

[
α

2
√

β(m−c2)
(x− ct)

])
)]

.

4. Conclusions

The sinh-Gordon type equations appear in wide range of physical applica-
tions in branches of nonlinear science. In this work we used the Exp-function
method to obtain traveling wave solutions of the sinh-Gordon type equations.
In applications of Exp-function method in past decade common errors in finding
exact solutions of nonlinear problems have been omitted [25]. In this paper we
present an application of this method with tackling these common errors. Also,
we do not claim that we have obtained new solutions. This method changes
the problem from solving nonlinear partial differential equations to solving a
ordinary differential equations by chosen free parameters. The obtained result
clarify that the Exp-function method is a very effective and powerful mathemat-
ical tool for finding traveling wave solutions of the nonlinear partial differential
equations.
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