• Title/Summary/Keyword: CMOS 저 잡음 증폭기

Search Result 105, Processing Time 0.024 seconds

Design of Variable Gain Receiver Front-end with Wide Gain Variable Range and Low Power Consumption for 5.25 GHz (5.25 GHz에서 넓은 이득 제어 범위를 갖는 저전력 가변 이득 프론트-엔드 설계)

  • Ahn, Young-Bin;Jeong, Ji-Chai
    • Journal of IKEEE
    • /
    • v.14 no.4
    • /
    • pp.257-262
    • /
    • 2010
  • We design a CMOS front-end with wide variable gain and low power consumption for 5.25 GHz band. To obtain wide variable gain range, a p-type metal-oxide-semiconductor field-effect transistor (PMOS FET) in the low noise amplifier (LNA) section is connected in parallel. For a mixer, single balanced and folded structure is employed for low power consumption. Using this structure, the bias currents of the transconductance and switching stages in the mixer can be separated without using current bleeding path. The proposed front-end has a maximum gain of 33.2 dB with a variable gain range of 17 dB. The noise figure and third-order input intercept point (IIP3) are 4.8 dB and -8.5 dBm, respectively. For this operation, the proposed front-end consumes 7.1 mW at high gain mode, and 2.6 mW at low gain mode. The simulation results are performed using Cadence RF spectre with the Taiwan Semiconductor Manufacturing Company (TSMC) $0.18\;{\mu}m$ CMOS technology.)

A Novel Hybrid Balun Circuit for 2.4 GHz Low-Power Fully-differential CMOS RF Direct Conversion Receiver (2.4 GHz 저전력 차동 직접 변환 CMOS RF 수신기를 위한 새로운 하이브리드 발룬 회로)

  • Chang, Shin-Il;Park, Ju-Bong;Shin, Hyun-Chol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.86-93
    • /
    • 2008
  • A low-power, low-noise, highly-linear hybrid balun circuit is proposed for 2.4-GHz fully differential CMOS direct conversion receivers. The hybrid balun is composed of a passive transformer and loss-compensating auxiliary amplifiers. Design issues regarding the optimal signal splitting and coupling between the transformer and compensating amplifiers are discussed. Implemented in $0.18{\mu}m$ CMOS process, the 2.4 GHz hybrid balun achieves 2.8 dB higher gain and 1.9 dB lower noise figure than its passive counterpart and +23 dBm of IIP3 only at a current consumption of 0.67 mA from 1.2 V supply. It is also examined that the hybrid balun can remarkably lower the total noise figure of a 2.4 GHz fully differential RF receiver only at a cost of 0.82 mW additional power dissipation.

60 GHz WPAN LNA and Mixer Using 90 nm CMOS Process (90 nm CMOS 공정을 이용한 60 GHz WPAN용 저잡음 증폭기와 하향 주파수 혼합기)

  • Kim, Bong-Su;Kang, Min-Soo;Byun, Woo-Jin;Kim, Kwang-Seon;Song, Myung-Sun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.1
    • /
    • pp.29-36
    • /
    • 2009
  • In this paper, the design and implementation of LNA and down-mixer using 90 nm CMOS process are presented for 60 GHz band WPAN receiver. In order to extract characteristics of the transistor used to design each elements under the optimum bias conditions, the S-parameter of the manufactured cascode topology was measured and the effect of the RF pad was removed. Measured results of 3-stages cascode type LNA the gain of 25 dB and noise figure of 7 dB. Balanced type down-mixer with a balun at LO input port shows the conversion gain of 12.5 dB within IF frequency($8.5{\sim}11.5\;GHz$) and input PldB of -7 dBm. The size and power consumption of LNA and down-mixer are $0.8{\times}0.6\;mm^2$, 43 mW and $0.85{\times}0.85\;mm^2$, 1.2 mW, respectively.

Post-Linearization Technique of CMOS Cascode Low Noise Amplifier Using Dual Common Gate FETs (두 개의 공통 게이트 FET를 이용한 캐스코드형 CMOS 저잡음 증폭기의 후치 선형화 기법)

  • Huang, Guo-Chi;Kim, Tae-Sung;Kim, Seong-Kyun;Kim, Byung-Sung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.7 s.361
    • /
    • pp.41-46
    • /
    • 2007
  • A novel post-linearization technique is proposed for CMOS cascode low noise amplifier (LNA). The technique uses dual common gate FETs one of which delivers the linear currents to a load and the other one sinks the $3^{rd}$ order intermodulation currents of output currents from the common source FET. Selective current branching can be implemented in $0.18{\mu}m$ CMOS process by using a thick oxide FET as an IM3 sinker with a normal FET as a linear current buffer. A differential LNA adopting this technique is designed at 2.14GHz. The measurement results show 11dBm IIP3, 15.5dB power gain and 2.85dB noise figure consuming 12.4mA from 1.8V power supply. Compared with the LNA with turning off the IM3 sinker, the proposed technique improves the IIP3 by 7.5 dB.

TV White Space Low-noise and High-Linear RF Front-end Receiver (텔레비전 유휴 주파수 대역을 지원하는 저잡음 및 고선형 특성의 RF 수신기 설계)

  • Kim, Chang-wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.91-99
    • /
    • 2018
  • This paper has proposed a low-noise and high-linear RF receiver supporting TV white space from 470 MHz to 698 MHz), which is implemented in $0.13-{\mu}m$ CMOS technology. It consists of a low-noise amplifier, a RF band-pass filter, a RF amplifier, a passive down-conversion mixer, and a channel-selection low-pass filter. A low-noise amplifier and RF amplifier provide a high voltage gain to improve the sensitivity level. To suppress strong and nearby interferers, two RF filtering schemes have been performed by using a RF BPF and a down-conversion mixer. The proposed LPF has been based on the common-gate topology and adopted a bi-quad cell to achieve -24dB/oct characteristics. In addition, the RF receiver can support the overall TV band by controlling a LO frequency. The simulated results show a voltage gain of 56 dB, a noise figure of less than 2 dB, and an out-of-channel IIP3 of -2.3 dBm. It consumes 37 mA from a 1.5 V supply voltage.

A Design of Ultra Wide Band Switched-Gain Controlled Low Noise Amplifier Using 0.18 um CMOS (0.18 um CMOS 공정을 이용한 UWB 스위칭-이득제어 저잡음 증폭기 설계)

  • Jeong, Moo-Il;Lee, Chang-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.4 s.119
    • /
    • pp.408-415
    • /
    • 2007
  • A switched-gain controlled LNA is designed and implemented in 0.18 um CMOS technology for $3.1{\sim}4.8\;GHz$ UWB system. In high gain mode, measurement shows a power gain of 12.5 dB, an input IP3 of 0 dBm, while consuming only 8.13 mA of current. In low gain mode, measurement shows a power gain of -8.7 dB, an input IP3 of 9.1 dBm, while consuming only 0 mA of current.

Design of Ultra Wide-Band CMOS Low Noise Amplifier (광대역 CMOS 저잡음 증폭기 설계)

  • Moon Jeong-Ho;Jeong Moo-Il;Kim Yu-Sin;Lee Kwang-Du;Park Sang-Gyu;Han Sang-Min;Kim Young-Hwan;Lee Chang-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.6 s.109
    • /
    • pp.597-604
    • /
    • 2006
  • An ultrawideband(UWB) $3.1{\sim}5.15$ GHz low-noise amplifier employing a novel input matching circuit and feedback topology are presented. The proposed UWB amplifier is Implemented in $0.18{\mu}m$ RF CMOS technology. Measurements show a NF of $3.4{\sim}3.9$ dB, a power gain of $12.8{\sim}14$ dB, better than -9.4 of input matching and, an input IP3 of -1 dBm, while comsuming only 14.5 mW of power.

A Gain and NF Dynamic Controllable Wideband Low Noise Amplifier (이득과 잡음 지수의 동적 제어가 가능한 광대역 저 잡음 증폭기)

  • Oh, Tae-Soo;Kim, Seong-Kyun;Huang, Guo-Chi;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.900-905
    • /
    • 2009
  • A common drain feedback CMOS wideband LNA with current bleeding and input inductive series-peaking techniques is presented in this paper. DC coupling is adopted between cascode and feedback amplifiers, so that the gain and NF of the LNA can be dynamically controlled by adjusting the bleeding current. The fabricated LNA shows the bandwidth of 2.5 GHz. The high gain mode shows 17.5 dB gain with $1.7{\sim}2.8\;dB$ NF and consumes 27 mW power and the low gain mode has 14 dB gain with $2.7{\sim}4.0\;dB$ NF and dissipates 1.8 mW from 1.8 V supply.

A Design of 77 GHz LNA Using 65 nm CMOS Process (65 nm CMOS 공정을 이용한 77 GHz LNA 설계)

  • Kim, Jun-Young;Kim, Seong-Kyun;Cui, Chenglin;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.9
    • /
    • pp.915-921
    • /
    • 2013
  • This work presents a 77 GHz low noise amplifier(LNA) for automotive radar systems using 65 nm RF CMOS process. The LNA is composed of three stage common source amplifiers and includes transmission line matching networks. To reduce the time for three dimensional EM simulation, we optimize the transmission line impedance matching network using a pre-built EM library. The proposed compact simulation technique is confirmed by measurement results. The peak gain of the LNA is 10 dB at 77 GHz and input/output return losses are below -10 dB around the design frequency.

A 5.3GHz wideband low-noise amplifier for subsampling direct conversion receivers (서브샘플링 직접변환 수신기용 5.3GHz 광대역 저잡음 증폭기)

  • Park, Jeong-Min;Seo, Mi-Kyung;Yun, Ji-Sook;Choi, Boo-Young;Han, Jung-Won;Park, Sung-Min
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.12
    • /
    • pp.77-84
    • /
    • 2007
  • In this parer, a wideband low-noise amplifier (LNA) has been realized in a 0.18mm CMOS technology for the applications of subsampling direct-conversion RF receivers. By exploiting the inverter-type transimpedance input stage with a 3rd-order Chebyshev matching network, the wideband LNA demonstrates the measured results of the -3dB bandwidth of 5.35GHz, the power gain (S21) of $12\sim18dB$, the noise figure (NF) of $6.9\sim10.8dB$, and the broadband input/output impedance matching of less than -10dB/-24dB within the bandwidth, respectively. The chip dissipates 32.4mW from a single 1.8V supply, and occupies the area of $0.56\times1.0mm^2$.