• Title/Summary/Keyword: C*-algebra

Search Result 322, Processing Time 0.025 seconds

THE SPHERICAL NON-COMMUTATIVE TORI

  • Boo, Deok-Hoon;Oh, Sei-Qwon;Park, Chun-Gil
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.331-340
    • /
    • 1998
  • We define the spherical non-commutative torus $L_{\omega}$/ as the crossed product obtained by an iteration of l crossed products by actions of, the first action on C( $S^{2n+l}$). Assume the fibres are isomorphic to the tensor product of a completely irrational non-commutative torus $A_{p}$ with a matrix algebra $M_{m}$ ( ) (m > 1). We prove that $L_{\omega}$/ $M_{p}$ (C) is not isomorphic to C(Prim( $L_{\omega}$/)) $A_{p}$ $M_{mp}$ (C), and that the tensor product of $L_{\omega}$/ with a UHF-algebra $M_{p{\infty}}$ of type $p^{\infty}$ is isomorphic to C(Prim( $L_{\omega}$/)) $A_{p}$ $M_{m}$ (C) $M_{p{\infty}}$ if and only if the set of prime factors of m is a subset of the set of prime factors of p. Furthermore, it is shown that the tensor product of $L_{\omega}$/, with the C*-algebra K(H) of compact operators on a separable Hilbert space H is not isomorphic to C(Prim( $L_{\omega}$/)) $A_{p}$ $M_{m}$ (C) K(H) if Prim( $L_{\omega}$/) is homeomorphic to $L^{k}$ (n)$\times$ $T^{l'}$ for k and l' non-negative integers (k > 1), where $L^{k}$ (n) is the lens space.$T^{l'}$ for k and l' non-negative integers (k > 1), where $L^{k}$ (n) is the lens space.e.

  • PDF

ON A GENERALIZED TRIF'S MAPPING IN BANACH MODULES OVER A C*-ALGEBRA

  • Park, Chun-Gil;Rassias Themistocles M.
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.323-356
    • /
    • 2006
  • Let X and Y be vector spaces. It is shown that a mapping $f\;:\;X{\rightarrow}Y$ satisfies the functional equation $$mn_{mn-2}C_{k-2}f(\frac {x_1+...+x_{mn}} {mn})$$ $(\ddagger)\;+mn_{mn-2}C_{k-1}\;\sum\limits_{i=1}^n\;f(\frac {x_{mi-m+1}+...+x_{mi}} {m}) =k\;{\sum\limits_{1{\leq}i_1<... if and only if the mapping $f : X{\rightarrow}Y$ is additive, and we prove the Cauchy-Rassias stability of the functional equation $(\ddagger)$ in Banach modules over a unital $C^*-algebra$. Let A and B be unital $C^*-algebra$ or Lie $JC^*-algebra$. As an application, we show that every almost homomorphism h : $A{\rightarrow}B$ of A into B is a homomorphism when $h(2^d{\mu}y) = h(2^d{\mu})h(y)\;or\;h(2^d{\mu}\;o\;y)=h(2^d{\mu})\;o\;h(y)$ for all unitaries ${\mu}{\in}A,\;all\;y{\in}A$, and d = 0,1,2,..., and that every almost linear almost multiplicative mapping $h:\;A{\rightarrow}B$ is a homomorphism when h(2x)=2h(x) for all $x{\in}A$. Moreover, we prove the Cauchy-Rassias stability of homomorphisms in $C^*-algebras$ or in Lie $JC^*-algebras$, and of Lie $JC^*-algebra$ derivations in Lie $JC^*-algebras$.

Full hereditary $C^{*}$-subalgebras of crossed products

  • Jeong, Ja A.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.2
    • /
    • pp.193-199
    • /
    • 1993
  • A hereditary $C^{*}$-subalgebra B of a $C^{*}$-algebra A is said to be full if B is not contained in any proper closed two-sided ideal in A, so each hereditary $C^{*}$-subalgebra of a simple $C^{*}$-algebra is always full. It is well known that every $C^{*}$-algebra is strong Morita equivalent to its full hereditary $C^{*}$-subalgebra, but the strong Morita equivalence of a $C^{*}$-algebra A and its hereditary $C^{*}$-subalgebra B does not imply the fullness of B, ingeneral. We present the following lemma for our computational convenience in the course of the proof of the main theorem. Note that $L_{B}$, $L_{B}$$^{*}$ and $L_{B}$ $L_{B}$$^{*}$ are all .alpha.-invariant whenever B is .alpha.-invariant under the action .alpha. of G.a. of G.a. of G.a. of G.f G.

  • PDF

PRIMITIVE IDEALS AND PURE INFINITENESS OF ULTRAGRAPH C-ALGEBRAS

  • Larki, Hossein
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.1-23
    • /
    • 2019
  • Let ${\mathcal{G}}$ be an ultragraph and let $C^*({\mathcal{G}})$ be the associated $C^*$-algebra introduced by Tomforde. For any gauge invariant ideal $I_{(H,B)}$ of $C^*({\mathcal{G}})$, we approach the quotient $C^*$-algebra $C^*({\mathcal{G}})/I_{(H,B)}$ by the $C^*$-algebra of finite graphs and prove versions of gauge invariant and Cuntz-Krieger uniqueness theorems for it. We then describe primitive gauge invariant ideals and determine purely infinite ultragraph $C^*$-algebras (in the sense of Kirchberg-Rørdam) via Fell bundles.

Analysis on the Principles for Teaching Algebra Revealed in Clairaut's (Clairaut의 <대수학 원론>에 나타난 대수 지도 원리에 대한 분석)

  • Chang, Hye-Won
    • Journal of Educational Research in Mathematics
    • /
    • v.17 no.3
    • /
    • pp.253-270
    • /
    • 2007
  • by A.C. Clairaut was written based on the historico-genetic principle such as his . In this paper, by analyzing his we can induce six principles that Clairaut adopted to teach algebra: necessity and curiosity as a motive of studying algebra, harmony of discovery and proof, complementarity of generalization and specialization, connection of knowledge to be learned with already known facts, semantic approaches to procedural knowledge of mathematics, reversible approach. These can be considered as strategies for teaching algebra accorded with beginner's mind. Some of them correspond with characteristics of , but the others are unique in the domain of algebra. And by comparing Clairaut's approaches with school algebra, we discuss about some mathematical subjects: setting equations in relation to problem situations, operations and signs of letters, rule of signs in multiplication, solving quadratic equations, and general relationship between roots and coefficients of equations.

  • PDF

ON THE STRUCTURE OF NON-COMMUTATIVE TORI

  • Boo, Deok-Hoon;Park, Won-Gil
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2000
  • The non-commutative torus $A_{\omega}=C^*(\mathbb{Z}^n,{\omega})$ may be realized as the $C^*$-algebra of sections of a locally trivial $C^*$-algebra bundle over $\widehat{S_{\omega}}$ with fibres $C^*(\mathbb{Z}^n/S_{\omega},{\omega}_1)$ for some totally skew multiplier ${\omega}_1$ on $\mathbb{Z}^n/S_{\omega}$. It is shown that $A_{\omega}{\otimes}M_l(\mathbb{C})$ has the trivial bundle structure if and only if $\mathbb{Z}^n/S_{\omega}$ is torsion-free.

  • PDF

On Factor States on a Fixed Point Algebra of a UHF Algebra by the Torus Action II

  • Byun, Chang-Ho
    • Honam Mathematical Journal
    • /
    • v.7 no.1
    • /
    • pp.119-127
    • /
    • 1985
  • A study is made of a special type of $C^{\ast}$ -dynamical systems, consisting of a class $n^{\infty}$ uniformly hyperfinite $C^{\ast}$-algebra A, the torus group $G=T^{d}$ ($$1{\leq_-}d{\leq_-}n-1$$) and a natural product action of G on A by $^{*}-automorphisms$. We give some conditions for product states on the fixed point algebra $A^{G}$ of A by G to be factorial.

  • PDF

A BANACH ALGEBRA OF SERIES OF FUNCTIONS OVER PATHS

  • Cho, Dong Hyun;Kwon, Mo A
    • Korean Journal of Mathematics
    • /
    • v.27 no.2
    • /
    • pp.445-463
    • /
    • 2019
  • Let C[0, T] denote the space of continuous real-valued functions on [0, T]. On the space C[0, T], we introduce a Banach algebra of series of functions which are generalized Fourier-Stieltjes transforms of measures of finite variation on the product of simplex and Euclidean space. We evaluate analytic Feynman integrals of the functions in the Banach algebra which play significant roles in the Feynman integration theory and quantum mechanics.

THE INDEX OF THE CORESTRICTION OF A VALUED DIVISION ALGEBRA

  • Hwang, Yoon-Sung
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.279-284
    • /
    • 1997
  • Let L/F be a finite separable extension of Henselian valued fields with same residue fields $\overline{L} = \overline{F}$. Let D be an inertially split division algebra over L, and let $^cD$ be the underlying division algebra of the corestriction $cor_{L/F} (D)$ of D. We show that the index $ind(^cD) of ^cD$ divides $[Z(\overline{D}) : Z(\overline {^cD})] \cdot ind(D), where Z(\overline{D})$ is the center of the residue division ring $\overline{D}$.

  • PDF