DOI QR코드

DOI QR Code

ON A GENERALIZED TRIF'S MAPPING IN BANACH MODULES OVER A C*-ALGEBRA

  • Park, Chun-Gil (Department of Mathematics Chungnam National University) ;
  • Rassias Themistocles M. (Department of Mathematics National Technical University of Athens Zografou Campus)
  • Published : 2006.03.01

Abstract

Let X and Y be vector spaces. It is shown that a mapping $f\;:\;X{\rightarrow}Y$ satisfies the functional equation $$mn_{mn-2}C_{k-2}f(\frac {x_1+...+x_{mn}} {mn})$$ $(\ddagger)\;+mn_{mn-2}C_{k-1}\;\sum\limits_{i=1}^n\;f(\frac {x_{mi-m+1}+...+x_{mi}} {m}) =k\;{\sum\limits_{1{\leq}i_1<... if and only if the mapping $f : X{\rightarrow}Y$ is additive, and we prove the Cauchy-Rassias stability of the functional equation $(\ddagger)$ in Banach modules over a unital $C^*-algebra$. Let A and B be unital $C^*-algebra$ or Lie $JC^*-algebra$. As an application, we show that every almost homomorphism h : $A{\rightarrow}B$ of A into B is a homomorphism when $h(2^d{\mu}y) = h(2^d{\mu})h(y)\;or\;h(2^d{\mu}\;o\;y)=h(2^d{\mu})\;o\;h(y)$ for all unitaries ${\mu}{\in}A,\;all\;y{\in}A$, and d = 0,1,2,..., and that every almost linear almost multiplicative mapping $h:\;A{\rightarrow}B$ is a homomorphism when h(2x)=2h(x) for all $x{\in}A$. Moreover, we prove the Cauchy-Rassias stability of homomorphisms in $C^*-algebras$ or in Lie $JC^*-algebras$, and of Lie $JC^*-algebra$ derivations in Lie $JC^*-algebras$.

Keywords

References

  1. Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), 431-434 https://doi.org/10.1155/S016117129100056X
  2. P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approxi- mately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436 https://doi.org/10.1006/jmaa.1994.1211
  3. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224
  4. D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), no. 2-3, 125-153 https://doi.org/10.1007/BF01830975
  5. K. W. Jun and Y. H. Lee, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999), no. 1, 305-315 https://doi.org/10.1006/jmaa.1999.6546
  6. R. V. Kadison and G. K. Pedersen, Means and convex combinations of unitary operators, Math. Scand. 57 (1985), no. 2, 249-266 https://doi.org/10.7146/math.scand.a-12116
  7. R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Elementary Theory, Academic Press, New York, 1983
  8. C. Park, On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl. 275 (2002), no. 2, 711-720 https://doi.org/10.1016/S0022-247X(02)00386-4
  9. C. -G. Park and J. Hou, Homomorphisms between C*-algebras associated with the Trif functional equation and linear derivations on C*-algebras, J. Korean Math. Soc. 41 (2004), no. 4, 461-477 https://doi.org/10.4134/JKMS.2004.41.3.461
  10. C. -G. Park and W. -G. Park, On the Jensen's equation in Banach modules, Taiwanese J. Math. 6 (2002), no. 4, 523-531 https://doi.org/10.11650/twjm/1500407476
  11. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300
  12. Th. M. Rassias, Problem 16; 2, Report of the 27th International Symp. on Functional Equations, Aeq. Math. 39 (1990), 292-293; 309
  13. Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), no. 1, 23-130 https://doi.org/10.1023/A:1006499223572
  14. Th. M. Rassias, The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), no. 2, 352-378 https://doi.org/10.1006/jmaa.2000.6788
  15. Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), no. 1, 264-284 https://doi.org/10.1006/jmaa.2000.7046
  16. Th. M. Rassias and P. Semrl, On the behavior of mappings which do not satisfy Hyers{Ulam stability, Proc. Amer. Math. Soc. 114 (1992), no. 4, 989-993
  17. Th. M. Rassias and P. Semrl, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. 173 (1993), no. 2, 325-338 https://doi.org/10.1006/jmaa.1993.1070
  18. T. Trif, On the stability of a functional equation deriving from an inequality of Popoviciu for convex functions, J. Math. Anal. Appl. 272 (2002), no. 2, 604-616 https://doi.org/10.1016/S0022-247X(02)00181-6
  19. S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1960
  20. H. Upmeier, Jordan algebras in analysis, operator theory, and quantum me- chanics, CBMS Regional Conference Series in Mathematics, 67, Amer. Math. Soc., Providence, 1987

Cited by

  1. STABILITY OF THE JENSEN TYPE FUNCTIONAL EQUATION IN BANACH ALGEBRAS: A FIXED POINT APPROACH vol.19, pp.2, 2011, https://doi.org/10.11568/kjm.2011.19.2.149
  2. On the Cauchy–Rassias stability of a generalized additive functional equation vol.339, pp.1, 2008, https://doi.org/10.1016/j.jmaa.2007.06.060