References
- S. J. Chang, J. G. Choi, and D. Skoug, Integration by parts formulas involving generalized Fourier-Feynman transforms on function sapce, Trans. Amer. Math. Soc. 355 (2003), no. 7, 2925-2948 https://doi.org/10.1090/S0002-9947-03-03256-2
- S. J. Chang and D. M Chung, Conditional function space integrals with applica- tions. Rochy Mountain J. Math. 26 (1996), no. 1, 37-62 https://doi.org/10.1216/rmjm/1181072102
- S. J. Chang and D. Skoug, Generalized Fourier-Feynman transforms and a first variation on function space, Integral Transforms Spec. Funct. 14 (2003), no. 5, 375-393 https://doi.org/10.1080/1065246031000074425
- Z. -Y. Huang and J. A. Yan, Introduction to in finite dimensional stochastic anal- ysis, Kluwer Academic Publishers, Dordrecht; Science Press, Beijing, 2000
- H. -H. Kuo, White Noise Distribution Theory, CRC Press, Boca Raton, FL, 1996
- D. Lamberton and B. Lapeyre, Introduction to stochastic calculus applied to finance, Chapman & Hall, London, 1996
- J. H. Lee, The linear space of generalized Browian motions with applications, Proc. Amer. Math. Soc. 133 (2005), no. 7, 2147-2155
- R. C. Merton, Theory of rational option pricing, Bell J. Econom. and Management Sci. 4 (1973), 141-183 https://doi.org/10.2307/3003143
- D. Nualart, The Malliavin calculus and related topics, Springer-Verlag, 1995
- B. Oksendal, An introduction to Malliavin calculus with applications to econom- ics, Working paper, No 3/96, Norwegian School of Economics and Business Administration, 1996
- J. Potthoff and M. Timpel, On a dual pair of smooth and generalized random variables, Potential Anal. 4 (1995), 647-654
- P. Wilmott, Derivatives, John Wiley and Sons Ltd, 1998
- J. Yeh, Stochastic process and the Wiener integral, Marcel Dekker, Inc., New York, 1973
Cited by
- A TRANSLATION THEOREM FOR THE GENERALIZED FOURIER-FEYNMAN TRANSFORM ASSOCIATED WITH GAUSSIAN PROCESS ON FUNCTION SPACE vol.53, pp.5, 2016, https://doi.org/10.4134/JKMS.j150317
- Effect of drift of the generalized Brownian motion process: an example for the analytic Feynman integral vol.106, pp.6, 2016, https://doi.org/10.1007/s00013-016-0899-x