THE SPHERICAL NON-COMMUTATIVE TORI

  • Boo, Deok-Hoon (Department of Mathematics Chungnam National University) ;
  • Oh, Sei-Qwon (Department of Mathematics Chungnam National University) ;
  • Park, Chun-Gil (Department of Mathematics Chungnam National University)
  • Published : 1998.05.01

Abstract

We define the spherical non-commutative torus $L_{\omega}$/ as the crossed product obtained by an iteration of l crossed products by actions of, the first action on C( $S^{2n+l}$). Assume the fibres are isomorphic to the tensor product of a completely irrational non-commutative torus $A_{p}$ with a matrix algebra $M_{m}$ ( ) (m > 1). We prove that $L_{\omega}$/ $M_{p}$ (C) is not isomorphic to C(Prim( $L_{\omega}$/)) $A_{p}$ $M_{mp}$ (C), and that the tensor product of $L_{\omega}$/ with a UHF-algebra $M_{p{\infty}}$ of type $p^{\infty}$ is isomorphic to C(Prim( $L_{\omega}$/)) $A_{p}$ $M_{m}$ (C) $M_{p{\infty}}$ if and only if the set of prime factors of m is a subset of the set of prime factors of p. Furthermore, it is shown that the tensor product of $L_{\omega}$/, with the C*-algebra K(H) of compact operators on a separable Hilbert space H is not isomorphic to C(Prim( $L_{\omega}$/)) $A_{p}$ $M_{m}$ (C) K(H) if Prim( $L_{\omega}$/) is homeomorphic to $L^{k}$ (n)$\times$ $T^{l'}$ for k and l' non-negative integers (k > 1), where $L^{k}$ (n) is the lens space.$T^{l'}$ for k and l' non-negative integers (k > 1), where $L^{k}$ (n) is the lens space.e.

Keywords