• Title/Summary/Keyword: Borel measure

Search Result 48, Processing Time 0.031 seconds

Lebesgue-Stieltjes Measures and Differentiation of Measures

  • Jeon, Won-Kee
    • Honam Mathematical Journal
    • /
    • v.8 no.1
    • /
    • pp.51-74
    • /
    • 1986
  • The thery of measure is significant in that we extend from it to the theory of integration. AS specific metric outer measures we can take Hausdorff outer measure and Lebesgue-Stieltjes outer measure connecting measure with monotone functions.([12]) The purpose of this paper is to find some properties of Lebesgue-Stieltjes measure by extending it from $R^1$ to $R^n(n{\geq}1)$ $({\S}3)$ and differentiation of the integral defined by Borel measure $({\S}4)$. If in detail, as follows. We proved that if $_n{\lambda}_{f}^{\ast}$ is Lebesgue-Stieltjes outer measure defined on a finite monotone increasing function $f:R{\rightarrow}R$ with the right continuity, then $$_n{\lambda}_{f}^{\ast}(I)=\prod_{j=1}^{n}(f(b_j)-f(a_j))$$, where $I={(x_1,...,x_n){\mid}a_j$<$x_j{\leq}b_j,\;j=1,...,n}$. (Theorem 3.6). We've reached the conclusion of an extension of Lebesgue Differentiation Theorem in the course of proving that the class of continuous function on $R^n$ with compact support is dense in $L^p(d{\mu})$ ($1{\leq$}p<$\infty$) (Proposition 2.4). That is, if f is locally $\mu$-integrable on $R^n$, then $\lim_{h\to\0}\left(\frac{1}{{\mu}(Q_x(h))}\right)\int_{Qx(h)}f\;d{\mu}=f(x)\;a.e.(\mu)$.

  • PDF

Truncated Complex Moment Problem with Data in a Circle

  • Lee, Sang-Hun;Sim, Jung-Hui
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.2
    • /
    • pp.241-247
    • /
    • 2005
  • Let ${\gamma}{\equiv}\left{{\gamma}_{ij}\right}(0{\leq}i+j{\leq}2n)$ be a collection of complex numbers with ${\gamma}_{00}>0$ and ${\gamma}_{ji}={\bar{\gamma}}_{ij}$. The truncated complex moment problem for ${\gamma}$ entails finding a positive Borel measure ${\mu}$ supported in the complex plane ${\mathbb{C}}$ such that ${\gamma}_{ij}={\int}{\bar{z}}^{i}z^jd{\mu}(z)(0{\leq}i+j{\leq}2n)$. We solve this truncated moment problem with data in a circle and discuss the behavior of data in an extended moment matrix.

  • PDF

NOTES ON CARLESON TYPE MEASURES ON BOUNDED SYMMETRIC DOMAIN

  • Choi, Ki-Seong
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.65-74
    • /
    • 2007
  • Suppose that $\mu$ is a finite positive Borel measure on bounded symmetric domain $\Omega{\subset}\mathbb{C}^n\;and\;\nu$ is the Euclidean volume measure such that $\nu(\Omega)=1$. Suppose 1 < p < $\infty$ and r > 0. In this paper, we will show that the norms $sup\{\int_\Omega{\mid}k_z(w)\mid^2d\mu(w)\;:\;z\in\Omega\}$, $sup\{\int_\Omega{\mid}h(w)\mid^pd\mu(w)/\int_\Omega{\mid}h(w)^pd\nu(w)\;:\;h{\in}L_a^p(\Omega,d\nu),\;h\neq0\}$ and $$sup\{\frac{\mu(E(z,r))}{\nu(E(z,r))}\;:\;z\in\Omega\}$$ are are all equivalent. We will also show that the inclusion mapping $ip\;:\;L_a^p(\Omega,d\nu){\rightarrow}L^p(\Omega,d\mu)$ is compact if and only if lim $w\rightarrow\partial\Omega\frac{\mu(E(w,r))}{\nu(E(w,r))}=0$.

THE QUARTIC MOMENT PROBLEM

  • Li, Chun-Ji;Lee, Sang-Hoon
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.4
    • /
    • pp.723-747
    • /
    • 2005
  • In this paper, we consider the quartic moment problem suggested by Curto-Fialkow[6]. Given complex numbers $\gamma{\equiv}{\gamma}^{(4)}\;:\;{\gamma00},\;{\gamma01},\;{\gamma10},\;{\gamma01},\;{\gamma11},\;{\gamma20},\;{\gamma03},\;{\gamma12},\;{\gamma21},\;{\gamma30},\;{\gamma04},\;{\gamma13},\;{\gamma22},\;{\gamma31},\;{\gamma40}$, with ${\gamma00},\;>0\;and\;{\gamma}_{ji}={\gamma}_{ij}$ we discuss the conditions for the existence of a positive Borel measure ${\mu}$, supported in the complex plane C such that ${\gamma}_{ij}=\int\;\={z}^i\;z^j\;d{\mu}(0{\leq}i+j{\leq}4)$. We obtain sufficient conditions for flat extension of the quartic moment matrix M(2). Moreover, we examine the existence of flat extensions for nonsingular positive quartic moment matrices M(2).

A NOTE ON THE GENERALIZED HEAT CONTENT FOR LÉVY PROCESSES

  • Cygan, Wojciech;Grzywny, Tomasz
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1463-1481
    • /
    • 2018
  • Let $X=\{X_t\}_{t{\geq}0}$ be a $L{\acute{e}}vy$ process in ${\mathbb{R}}^d$ and ${\Omega}$ be an open subset of ${\mathbb{R}}^d$ with finite Lebesgue measure. The quantity $H_{\Omega}(t)={\int_{\Omega}}{\mathbb{P}}^x(X_t{\in}{\Omega})$ dx is called the heat content. In this article we consider its generalized version $H^{\mu}_g(t)={\int_{\mathbb{R}^d}}{\mathbb{E}^xg(X_t){\mu}(dx)$, where g is a bounded function and ${\mu}$ a finite Borel measure. We study its asymptotic behaviour at zero for various classes of $L{\acute{e}}vy$ processes.

A NOTE ON SINGULAR QUARTIC MOMENT PROBLEM

  • Li, Chun-Ji
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.91-102
    • /
    • 2000
  • Let ${\gamma}{\equiv}{\gamma}^{(2n)}$ denote a sequence of complex numbers ${\gamma}{00},{\gamma}{01},\cdots,{\gamma}0, 2n,...,{\gamma}{2n},0\;with\; {\gamma}{00}\;>\;0,{\gamma}{ji}={{\overline}{\gamma_{ij}}}$,and let K denote a closed subset of the complex plane C. The truncated K complex moment problem entails finding a positive Borel measure $\mu$ such that ${\gamma}{ij}={\int}{{\overline}{z}}^{i}z^{j}d{\mu}\;(0{\leq}\;i+j\;{\leq}\;2n)$ and supp ${\mu}{\subseteq}\;K$. If n=2, then is called the quartic moment problem. In this paper, we give partial solutions for the singular quartic moment problem with rank M(2)=5 and ${{\overline}{Z}}Z{\in}\;<1,Z,{{\overline}{Z}},Z^{2},{{\overline}{Z}}^2>$.

  • PDF

SOME RESULTS RELATED WITH POISSON-SZEGÖKERNEL AND BEREZIN TRANSFORM

  • Yang, Gye Tak;Choi, Ki Seong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.3
    • /
    • pp.417-426
    • /
    • 2011
  • Let ${\mu}$ be a finite positive Borel measure on the unit ball $B{\subset}{\mathbb{C}}^n$ and ${\nu}$ be the Euclidean volume measure such that ${\nu}(B)=1$. For the unit sphere $S=\{z:{\mid}z{\mid}=1\}$, ${\sigma}$ is the rotation-invariant measure on S such that ${\sigma}(S) =1$. Let ${\mathcal{P}}[f]$ be the Poisson-$Szeg{\ddot{o}}$ integral of f and $\tilde{\mu}$ be the Berezin transform of ${\mu}$. In this paper, we show that if there is a constant M > 0 such that ${\int_B}{\mid}{\mathcal{P}}[f](z){\mid}^pd{\mu}(z){\leq}M{\int_B}{\mid}{\mathcal{P}}[f](z){\mid}^pd{\nu}(z)$ for all $f{\in}L^p(\sigma)$, then ${\parallel}{\tilde{\mu}}{\parallel}_{\infty}{\equiv}{\sup}_{z{\in}B}{\mid}{\tilde{\mu}}(z){\mid}<{\infty}$, and we show that if ${\parallel}{\tilde{\mu}{\parallel}_{\infty}<{\infty}$, then ${\int_B}{\mid}{\mathcal{P}}[f](z){\mid}^pd{\mu}(z){\leq}C{\mid}{\mid}{\tilde{\mu}}{\mid}{\mid}_{\infty}{\int_S}{\mid}f(\zeta){\mid}^pd{\sigma}(\zeta)$ for some constant C.

Development of the Integral Concept (from Riemann to Lebesgue) (적분개념의 발달 (리만적분에서 르베그적분으로의 이행을 중심으로))

  • Kim, Kyung-Hwa
    • Journal for History of Mathematics
    • /
    • v.21 no.3
    • /
    • pp.67-96
    • /
    • 2008
  • In the 19th century Fourier and Dirichlet studied the expansion of "arbitrary" functions into the trigonometric series and this led to the development of the Riemann's definition of the integral. Riemann's integral was considered to be of the highest generality and was discussed intensively. As a result, some weak points were found but, at least at the beginning, these were not considered as the criticism of the Riemann's integral. But after Jordan introduced the theory of content and measure-theoretic approach to the concept of the integral, and after Borel developed the Jordan's theory of content to a theory of measure, Lebesgue joined these two concepts together and obtained a new theory of integral, now known as the "Lebesgue integral".

  • PDF

AN EVALUATION FORMULA FOR A GENERALIZED CONDITIONAL EXPECTATION WITH TRANSLATION THEOREMS OVER PATHS

  • Cho, Dong Hyun
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.451-470
    • /
    • 2020
  • Let C[0, T] denote an analogue of Wiener space, the space of real-valued continuous functions on the interval [0, T]. For a partition 0 = t0 < t1 < ⋯ < tn < tn+1 = T of [0, T], define Xn : C[0, T] → ℝn+1 by Xn(x) = (x(t0), x(t1), …, x(tn)). In this paper we derive a simple evaluation formula for Radon-Nikodym derivatives similar to the conditional expectations of functions on C[0, T] with the conditioning function Xn which has a drift and does not contain the present position of paths. As applications of the formula with Xn, we evaluate the Radon-Nikodym derivatives of the functions ∫0T[x(t)]mdλ(t)(m∈ℕ) and [∫0Tx(t)dλ(t)]2 on C[0, T], where λ is a complex-valued Borel measure on [0, T]. Finally we derive two translation theorems for the Radon-Nikodym derivatives of the functions on C[0, T].

NOTES ON ${\alpha}$-BLOCH SPACE AND $D_p({\mu})$

  • Yang, Gye Tak;Choi, Ki Seong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.3
    • /
    • pp.543-552
    • /
    • 2012
  • In this paper, we will show that if ${\mu}$ is a Borel measure on the unit disk D such that ${\int}_{D}\frac{d{\mu}(z)}{(1-\left|z\right|^2)^{p\alpha}}$ < ${\infty}$ where 0 < ${\alpha},{\rho}$ < ${\infty}$, then a bounded sequence of functions {$f_n$} in the $\alpha$-Bloch space $\mathcal{B}{\alpha}$ has a convergent subsequence in the space $D_p({\mu})$ of analytic functions f on D satisfying $f^{\prime}\;{\in}\;L^p(D,{\mu})$. Also, we will find some conditions such that ${\int}_D\frac{d\mu(z)}{(1-\left|z\right|^2)^p$.