DOI QR코드

DOI QR Code

SOME RESULTS RELATED WITH POISSON-SZEGÖKERNEL AND BEREZIN TRANSFORM

  • Yang, Gye Tak (Department of Information Security Konyang University) ;
  • Choi, Ki Seong (Department of Information Security Konyang University)
  • Received : 2011.02.12
  • Accepted : 2011.08.13
  • Published : 2011.09.30

Abstract

Let ${\mu}$ be a finite positive Borel measure on the unit ball $B{\subset}{\mathbb{C}}^n$ and ${\nu}$ be the Euclidean volume measure such that ${\nu}(B)=1$. For the unit sphere $S=\{z:{\mid}z{\mid}=1\}$, ${\sigma}$ is the rotation-invariant measure on S such that ${\sigma}(S) =1$. Let ${\mathcal{P}}[f]$ be the Poisson-$Szeg{\ddot{o}}$ integral of f and $\tilde{\mu}$ be the Berezin transform of ${\mu}$. In this paper, we show that if there is a constant M > 0 such that ${\int_B}{\mid}{\mathcal{P}}[f](z){\mid}^pd{\mu}(z){\leq}M{\int_B}{\mid}{\mathcal{P}}[f](z){\mid}^pd{\nu}(z)$ for all $f{\in}L^p(\sigma)$, then ${\parallel}{\tilde{\mu}}{\parallel}_{\infty}{\equiv}{\sup}_{z{\in}B}{\mid}{\tilde{\mu}}(z){\mid}<{\infty}$, and we show that if ${\parallel}{\tilde{\mu}{\parallel}_{\infty}<{\infty}$, then ${\int_B}{\mid}{\mathcal{P}}[f](z){\mid}^pd{\mu}(z){\leq}C{\mid}{\mid}{\tilde{\mu}}{\mid}{\mid}_{\infty}{\int_S}{\mid}f(\zeta){\mid}^pd{\sigma}(\zeta)$ for some constant C.

Keywords

References

  1. S. Axler, The Bergman spaces, the Bloch space and commutators of multiplication operators, Duke Math. J. 53 (1986), 315-332. https://doi.org/10.1215/S0012-7094-86-05320-2
  2. C. A. Berger, L.A. Coburn and K.H. Zhu, Function theory on Cartan domains and the Berezin-Toeplitz symbols calculus, Amer. J. Math. 110 (1988), 921-953.
  3. D. Bekolle, C. A. Berger, L. A. Coburn and K. H. Zhu, BMO in the Bergman metric on bounded symmetric domain, J. Funct. Anal. 93 (1990), 310-350. https://doi.org/10.1016/0022-1236(90)90131-4
  4. K. S. Choi, Lipschitz type inequality in Weighted Bloch spaces Bq, J. Korean Math. Soc. 39 (2002), no. 2, 277-287. https://doi.org/10.4134/JKMS.2002.39.2.277
  5. K. S. Choi, little Hankel operators on Weighted Bloch spaces, Commun. Korean Math. Soc. 18 (2003), no. 3, 469-479. https://doi.org/10.4134/CKMS.2003.18.3.469
  6. K. S. Choi, Notes On the Bergman Projection type operators in $C^n$, Commun. Korean Math. Soc. 21 (2006), no. 1, 65-74. https://doi.org/10.4134/CKMS.2006.21.1.065
  7. P. L. Druen, Theory of $H^p$ spaces, Academic Press, New York, 1970.
  8. K. T. Hahn and K. S. Choi, Weighted Bloch spaces in $\mathbb{C}^n$, J. Korean Math. Soc. 35 (1998), no. 2, 171-189.
  9. L. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York/London, 1978.
  10. S. Krantz, Function theory of several complex variables, 2nd ed., Wadsworth & Brooks/Cole Math. Series, Pacific Grove, CA.
  11. D. H. Luecking, A Technique for characterizing Carleson measures on Bergman spaces, Proc. Amer. Math. Soc. 87 (1983), 656-660. https://doi.org/10.1090/S0002-9939-1983-0687635-6
  12. W. Rudin, Function theory in the unit ball of $\mathbb{C}^n$, Springer Verlag, New York, 1980.
  13. M. Stoll, Invariant potential theory in the unit ball of $\mathbb{C}^n$, London mathematical Society Lecture note series 199, 1994.
  14. G. T. Yang and K. S. Choi, On some measure related with Poisson integral on the unit ball, J. Chungcheong Math. Soc. 22 (2009), no. 1, 89-99.