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THE QUARTIC MOMENT PROBLEM

CHUNJI L1* AND SANG HoON LEE

ABSTRACT. In this paper, we consider the quartic moment problem
suggested by Curto-Fialkow([6]. Given complex numbers v = v -

Y00, Y01, Y10, Y02, Y11, Y20, Y03, V12, V21, Y30, Y04, V13, Y22, Y31, Y40, With
Yoo > 0 and <y;j; = %;;, we discuss the conditions for the existence of
a positive Borel measure u, supported in the complex plane C such
that vi; = [ z'27dp (0 <4+ 5 < 4). We obtain sufficient conditions
for flat extension of the quartic moment matrix M(2). Moreover,
we examine the existence of flat extensions for nonsingular positive
quartic moment matrices M (2).

1. Introduction and preliminaries

Given a closed subset K C C and a doubly indexed finite sequence
of complex numbers
(1.1)

Y Y05 Yoi, Y10, Y02, Yil, Y2057 ,7Y0,2ny Y1,2n-15°" ", Y2n—1,15 Y2n,0;

with y00 > 0 and ;i = %;;, the truncated K-moment problem entalls
finding a positive Borel measure p such that

(1.2) Yij = /Eizjdu (0<i+4+3<2n)andsuppu C K;

7y is called a truncated moment sequence (of order 2n) and y is called a
representing measure for v ([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]).

Forn > 1, let m = m(n) := (n+1)(n+2)/2. For A € M,,(C)
(the set of m x m complex matrices), we denote the successive rows and
columns according to the following lexicographic-functional ordering:
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For 0 <:+j < n,0 <I+Fk <n, we denote the entry in row Z'Z*,
column Z*Z7 of A by Al k) (,5)-

Given the truncated moment sequence v in (1.1) and 0<4,j<nm,we
define the (¢+ 1) x (j + 1) matrix M|[i, j| whose entries are the moments
of order i + j:

Vi, Yi+li-1 0 TYidh0
. Yi-1,5+1 Vi, o i1l
(1.3) Mli, j] = : : N : ,
Vo,i+i  Vii-1 0 Vi

where we note that M7, j] has the Toeplitz-like property of being con-
stant on each diagonal; in particular, M[i,i] is a self-adjoint Toeplitz
matrix. We now define the moment matriz M(n) = M(n)(v) via the
block decomposition M (n) := (M][t, j])o<i,j<n. For example, if n = 1,
the quartic moment problem for =y : o0, Y01, Y10, Y02, Y11, Y20 corresponds
to

— M][0,0] M[O, 1] Yoo “o1 Y10
(1.4) M(l)_(M[l,O] )= mom |,
Yo1 7Yo2 Y11

and if n = 2, the quartic moment problem for

7Y : 700, Y01, Y10 ;YOQa Y11, Y20, Y03, Y12, Y21, Y30, Y04, Y13, Y22, Y31, Y40
corresponds to

M[0,0] MI[o,1] M][0,2]
M@) = | M1,0] M[1,1] M][1,2]
M([2,0] M[2,1] M][2,2]

Y00 7Yoi Yo Yo2 Y11 Y20
(1.5) Yo Y1l Y20 Y12 Y21 Y30
Yor Yoz Y11 Yo3 Y1z 7e1
Y20 Y21 Y30 Y22 Y31 Y40
Y11 Y12 Y21 Y13 Y22 Y31
Yo2 Y03 Y12 o4 Y13 Y22
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Let P, C C[z, z] denote the complex polynomials in z, Z of total de-
gree < n. For p € Py, p(z,2) = ZO§i+an ai;Z'2%, let p = (ago, ao1, aro,

o, ane)T € C™MY. For M € Mpnn)(C) and p,q € Pp, let
(p,@)m = (MP,q). For M € My, let Cpr denote the column space
of M, ie.,

Cv:= (1,Z,Z,---,Z",--- 2" CC™",
For p € Py, p(2,2) = Zogiﬂ‘gn a;jz'27, we define
p(Z, Z) = Z aijZiZj € Cur;
0<itj<n
thus, for p,q € P, we have Mp = p(Z,Z) and (p,q)ys = (Mp,q) =

(p(Z,Z),§). The basic connection between M (n)(v) and any represent-
ing measure p is provided by the identity

[ f3du= 010)7.9) (1,9 € P
in particular,
(MF, = [ 15>

so if v admits a representing measure, then M(n) > 0.
We say that M(n) is recursively generated if

(RG) 2,4,09 € Pn, p(Z,2)=0= (pq)(Z,Z) =0.

Recall from [6, Proposition 3.1] that if 4 is a representing measure for
v, then
(1.6)

for pe P, p(Z,2) =0 <= supp u C Z(p) .= {z € C: p(z,z) = 0}.
It follows from [6, Corollary 3.5] that
(1.7)

if 11 is a representing measure for -, then card supp p > rank M(n).

Motivated by (1.6), the variety of v is defined by [8]
(1.8) V)= ] Z).

pE?n
p(Z,2)=0

V(v) is a closed (possibly empty) subset of the plane, and (1.6)—(1.7)
imply that if p is a presenting measure for 7, then

(1.9)  supp g C V(v) and rank M(n) < card supp u < card V(7).



726 Chunji Li and Sang Hoon Lee

Let p(v) := card V() — rank M (n)(v). It follows easily from (1.9) that
the condition p(7y) < 0 is an obstruction to the existence of representing
measures.

For a positive matrix A, an extension of A is a block matrix of the
form

(1.10) A:= ( g* g )

We first recall some elements of the theory of positive extensions of
moment matrices.

PROPOSITION 1.1. ([8, Proposition 1.7}, [6, Theorem 5.13])

(i) Suppose M(n) is positive and recursively generated. If M(n + 1)
is a flat extension of M(n), then M(n + 1) is positive and recursively
generated.

(ii) v has a rankM (n)-atomic representing measure if and only if
M(n) > 0 and M(n) admits a flat extension M(n + 1), i.e., M(n) can
be extended to a positive moment matrix M (n+1) satisfying rankM (n+
1) = rankM (n).

Suppose the analytic columns of M(n), 1,Z,--- ,Z%--- ,Z™ are de-
pendent. Then there exists a minimal positive integer 7,1 < r < n,
such that Z" € (1,---,Z""1); thus there exists unique scalars ¢;(j =
0,1,---,7 — 1) such that

Z" =l +--+ a1 277
In this case, 7 has a unique representing measure,
B = pobz + P10z + -+ pr—102, 4,
whose support {zg,-- , 2r—1} consists of the 7 distinct roots of
2= (ot a2

and whose densities p; satisfy the Vandermonde equation

1 e 1 Po Yoo
20 21 ot Bl P1 7Yo1
-1 -1 -1 ' '

ZS Z; Z:_l Pr—1 Yo,r—1

It is interesting to find a flat extension M(n + 1) of M(n). In order
to construct a flat extension M(n + 1) of M(n), one makes use of the
following Smul’jan’s Theorem.
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PROPOSITION 1.2. [12] For A > 0, the following statements are equiv-
alent:

(i) A >0;

(ii) There exists W such that AW = B and C > W*AW.

If A> 0 and AW = B, i.e.,, Ran B C Ran A, there is a unique flat
extension of the form (1.10), which we denote by [A; B]. For M(n) > 0,
we want to construct a positive flat extension of the form M(n + 1) =
[M(n); B(n)].

Given v = 7(2”), we may define blocks By py1,: -+ , Bn-1,n41 via the
analogue of (1.4), that is, B;ni1 = (Yitt—sn+1+s—t)0<s<i;0<t<n+1. NOW,
given a block B[n,n + 1] € Mp41,42(C), let

BO,n+1
B .= :
Bn—l,n+1
Bln,n+1]
and denote the successive columns of B by zmzzn, - , 2"t and
the successive rows by 1, Z,72,-+- ,Z™,--- ,Z™. Following [7], we say

that Bln,n + 1] is symmetric if, whenever i+ j =n,k+1=n+1, then
B ), (k1) = B, 1,k); We also say that B[n,n + 1] satisfies normality if,
whenever ¢ +j =n,k+1=n+1,7 > 1, and [ > 1, then B ;) ;) =
Bl(it+1,j-1),(k+1,i-1)- Recall from [7, (1.11)—(1.13)] that to construct a
flat moment matrix extension M (n+1) of M(n) > 0 it is necessary and
sufficient to construct a block B[n,n + 1] such that

B[n,n + 1] is symmetric and normal;

Ran B C Ran M(n), that is, B = M (n)W for some W,

C := W*M(n)W is Toeplitz, i.e., constant on diagonals.

If B is a moment matrix extension block satisfying Ran B C Ran
M(n), then [M(n); B] is a moment matrix if and only if the C block is
Toeplitz. Let C := (¢ij)1<ij<n+1 in [M(n); B(n)]. In principle, estab-
lishing this property entails (n + 1)? test of the form ¢;; = ¢i41,541, but
several factors serve to reduce this number:

(i) C is self-adjoint, so it suffices to consider the main diagonal and
the lower diagonals;

(ii) C is symmetric block [6, Proposition 2.3], so within each diagonal
elements that are symmetric with respect to the diagonal midpoint
are equal;

(iii) Normal bands in the B block propagate to normal bands in the C
block.



728 Chunji Li and Sang Hoon Lee

Conditions (i)-(iii) thus lead to a reduced C-block test for normality.
From this test, we know that if M(2) > 0 (i.e., M(2) is positive and
invertible), then [M(2); B(2)] is a flat extension of M(2) if and only if
c11 = c2 and c¢1 = c32.

CURTO-FIALKOW’S QUARTIC COMPLEX MOMENT PROBLEM. If M(2)
(7y) is the positive moment matrix corresponding to the moment sequence

Y * Y00, Y015 Y105 Y025 Y11, Y20, Y03, Y12, Y21, Y30, Y04, Y135 Y225 Y31, Y40,

does M (2)(vy) have a representing measure ?

Related to the singular (i.e., det M(2) = 0) quartic moment problem,
Curto and Fialkow showed good results in [8] and [9], but the nonsingular
case is still open.

THEOREM 1.3. [8, Theorem 1.10] Suppose M(2)(vy) is positive and
recursively generated. Then «y has a rank M (2)-atomic representing mea-
sure in each of the following cases:

(i) {1,2,Z,Z?} is linearly dependent in Crm2)i

(ii) {1,2,Z,2%} is a basis for Cpy(3), ZZ € (1,7, Z), and the moments
7vi; are all real, with the possible exception of yp4;

(i) {1,2,Z, 2%} is a basis for Ca(e), ZZ € (1,2, Z), and the reduced
C-block test ¢11 = ¢ passes;

(iv) {1,2,2,22 2%} is a basis for Cpy(2), ZZ € (1,Z,Z), and the re-
duced C-block test c11 = cyp passes for some choice of vgs.

THEOREM 1.4. [9, Theorem 1.3] Suppose M(2) >0, {1,2,Z,2%} is
independent in Cpy(g), and ZZ = Al +BZ+CZ+ DZ% D # 0. The
following are equivalent:

(i) ¥4 admits a 4-atomic (minimal) representing measure;

(if) M(2) admits a flat extension M(3);

(iil) there exists 23 € C such that 93 = A7ya1 + Bryas + Cy31 + Dyas.

THEOREM 1.5. [9, Theorem 4.1] Suppose M (2) > 0,{1,2,2Z,2% ZZ}
is a basis for Cpy(g). Then %) admits a 5-atomic (minimal) representing

measure if and only if there exists v23 € C such that the C-block of
[M(2); B(3) [y23]] satisfies C21 = Csa.

THEOREM 1.6. (9, Theorem 1.5] Suppose M(2) > 0,{1,2,Z,2% 27}
is a basis for Cyy(z). Then ~4) admits a representing measure.

In Section 2, we obtain some conditions for the positivity of M (2)
without any representing measure, which recapture a singular positive



The quartic moment problem 729

moment matrix M (2) admitting no representing measure and hence hav-
ing no flat extension M (3)(cf. [9]). In Section 3, by computer algebra (al-
gorithm) independently, we show that if M(2) is positive, {1, Z, Z, Z?}
is independent and ZZ € (1,Z,Z), then M(2) admits a flat exten-
sion M(3) (Theorem 3.2); if M(2) is positive, {1, 2,72, 2%, 2%} is in-
dependent and ZZ ¢ (1,Z,7Z,7?), then M(2) admits a flat extension
M(3) (Theorem 3.4). Finally, in Section 4 we show that if M(2) > 0,
M(1) =1,BJ[1,2] = 0 and the set S; (see Proposition 4.3) is not empty,
then M (2) admits a flat extension M (3) and hence a representing mea-
sure (Theorem 4.4).

Some of the calculations in this article were obtained throughout
computer experiments using the software tool Mathematica ([13}).

2. Moment matrices with no representing measure

We will find a singular moment matrix M (2) admitting no represent-
ing measure by illustrating p(-y) < 0 in this section. In other words, we
want to find polynomials p and ¢ in P, such that

(1) p(2,2) =0, ¢(Z,2) =0,

(2) card (Z(p) N 2(q)) < 4.

To do so we consider a truncated moment sequence ypo = 1,v01 =

0,702 = 0,711 = 1,703 = v, 712 = 4, Y04 = h, 713 = w,y22 = . Then the
corresponding moment matrix is given by

1 0 0 1 0

01 0 u u v

‘ 001 v u @

(2.1) M2)=|06 45 2 wh
l v« & w =z w

0 v u h w z

Then we first analyze the positivity of M(2) in (2.1).

LEMMA 2.1. Let M(2) be a moment matrix as in (2.1). Then M(2) >
0 and {1, Z,Z,Z*} is a basis for Cpy(yy if and only if the following hold:

(i) > [uf® +|vf?, -
(ii) 22— (14+3ul2+|v/)z+|ul*+|u]?+|v|*> = |w)?+ |u|?|v]? + 2Re(vtw+
u?w ~ u3v) = 0, )
(i) x2 — 2(|u)® + [v|)z + [u|* + [v]* = || — 2|u|?|v]? + 4Re(uvh) = 0.
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Proof. Suppose M(2) > 0 and {1,Z,Z,Z?} is a basis for Crmz)- If
we let

1 0 00 1000{
01 0 u 01 0 v u
A= , B:=1001 v u |,
0 01 v o _
o O w v z w
0O u v «x _
1l v © w =z
and
10 0 0 0O
01 0 uw 7
C=(001nwv aw |,
0O uw v = h
0 v u h =z

then det A > 0, det B = 0 and det C = 0. Thus the properties (i), (ii)
and (iii) are satisfied.

Conversely, suppose the properties (i), (ii), and (iii) are satisfied.
Then by (i), {1,Z,Z,Z%} is linearly independent. Also by (ii), (iii)
and Extension Principle ([10]; [6, Proposition 3.9]), ZZ and Z? are
contained in the span of {1, Z, Z, Z2}. Moreover, the positivity of M(2)
immediately follows from the observation that M (2) is a flat extension
of the positive matrix A. ) ]

THEOREM 2.2. Let M (2) be given as in (2.1). If M(2) satisfies

(i) z > [uf® + |v]?,
(i) 22— (1+3|ul?+|v|®)z+|u|+|u|? +|v]? = |w|? 4| u|?|v|2 +2Re(utw +
w1 — udp) =0,
(i) 22 = 2(|uf? + [v]*)z + |u[* + |v|* — |h[* — 2Ju[?|v]* + 4Re(uvh) = 0,
(iv) (h—2a0)(z = Jo]* — |uf?) = (@ — uv — @*)?,
(v) (z —|v|? = |u?)? # (vh — 28+ Glu|? — G|v|?) (uz — ulu|?va® — vd),

then M (2) is positive but has no representing measure.

Proof. By Lemma 2.1, (i), (ii), and (iii) imply M(2) > 0 and {1, Z, Z,
Z?} is a basis for Cp(2)- Thus there is the unique ki, k2, k3, kg, 11, 12,13, ls
in C such that

Z=ki1+kyZ+ksZ+ k4Z2,
22 =114 1 Z + 132 + 1,72
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Indeed,
_ 1
ky 1000 ' 1 zatulv—|v)>a—uw
ko _ 01 0 u U . x—[u42—|v42
ks - 00 1 v u - zu—ulul[*+vic—vw
_ _ e—[ul>—fo]?
k4 0 @ ¥ « W — G2 — T+
z—uf?—Jv]?
and
1 0
I 1000 0  uh—o(a+ul2—|v[2)
ls _ 0 1 0 u v _ _:c—|u2—Lv|2
I3 ] |00 1 w a | = | _vh=g—|u+]?)
I I - z—[u>~]v[?
4 0 @ v z h __ 2uav-h
a—ul?—Jof?
Take
(2.2) p(2,7) =1+ koz + kaZ + ka2® — 22
and
(2.3) q(2,2) = lgz + 137 + 142% — 72

Then the polynomials p and ¢ in P, satisfy p(Z, Z) = 0 and ¢(Z, Z) = 0.
From (2.2) and (2.3) we can obtain card (Z(p)NZ(q)) < 4ifly—ki =0
and 1+ ksls # 0. Note that I4 — k2 = 0 if and only if (h—2u9)(z — [v|> -
[ul?) = (@ —uv—a%)2 Also 1+ksls # 0 if and only if (z — |v|? — |u]?)? #
(vh — x4 1|u|? — Glv|?) (uz — u|u|?vE® — vw). But since rank M (2) = 4
and card (Z(p) N Z(q) < 4, it follows p(y) < 0. This completes the
proof. O

It is not difficult to see that the conditions in Theorem 2.2 are inde-
pendent each other. The following example illustrates that the condition
(v) in Theorem 2.2 is essential for card (Z(p) N Z(q)) < 4.

We may capture an example that provides a singular quartic moment
matrix admitting no representing measure.

ExAMPLE 2.3. If the truncated moment sequence <y of order 4 is
given by
~:1,0,0,0,1,0,1,0,0, 1,1, 1, 2, 1, 1,
then we have
(i) M(2) >0,
(ii) rank M(2) = 4 and thus M (2) satisfies the property (RG),
(iii) v has no representing measure.
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Proof. Observe

100010
010001
001100
M(2) = 001211
100121

010112

(i) This follows from a straightforward calculation.

(ii) Note that {1, Z,Z,Z?} is linearly independent. Thus evidently,
M (2) satisfies the property (RG). The rank assertion follows from a
straightforward calculation.

(iii) Note that

77 =1-2+2% and Z2=2-27+ 7%

Let p(z,2) = 1— 2+ 2° — 2%z and q(2,%) := z — 2+ 2*> — 2°. Then
p(Z,Z) =0 and ¢(Z, Z) = 0. Moreover,

Zp)NZ(q)={z€C: 22 =1}.

Observe that if u is a representing measure for «y, then supp u C Z(p) N
Z(q) and card supp g > rank M(n) = 4. Then we have p(vy) < 0, and
that + has no representing measure. Il

3. Flat extensions of singular quartic moment matrices

In this section we examine the existence of flat extensions for singular
quartic moment matrix M (2). More precisely, we consider the following:

PROBLEM 3.1. Assume M(2) is positive and ZZ € (1,Z,Z). Does
M (2) admit a flat extension M (3)7

We answer Problem 3.1 affirmatively below. If rank M (2) < 3, then
{1,2,Z, 7%} is linearly dependent in Cpy(z), so that by Theorem 1.3 (i),
the answer to Problem 3.1 is affirmative. Thus we will focus on the cases
that 4 < rank M(2) < 5. So we may assume that {1, Z, Z, Z?} is linearly
independent in Cps(p). First, we consider the case that rank M(2) = 4.
To do this we introduce some notations. For a positive IV x N matrix A,
we denote by [A]x the compression of A to the first & rows and columns;
similarly, the first k entries of a column C will be denoted by [Cls.
More generally, if 1 <nj < --- <ng < N we let [A](n, ... n,) denote the
compression of A to the rows and columns indexed by {ni,---,ng}.
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THEOREM 3.2. If

(i) M(2) is positive,

(i) {1, Z,Z, Z?} is a basis for Crm(2)s

(i) ZZ € (1, 2,2),
then M (2) has the unique flat extension M (3).

Proof. (Existence) Assume that ZZ = a1+BZ+60Z. Since p(Z,Z) =
0 implies #(Z, Z) = 0 ([6, Lemma 3.10}), we have that ZZ = &1 +6Z +
BZ, and hence o € R and § = 3. By Theorem 1.3 (iii), it suffices to
show that ¢11 = cg2. Since [M(2)]4 > 0, there exist the unique scalars
k1, ko, k3, k4 such that

[M(2)]s - (kv, k2, k3, ka)T = (03,713,704, 723) " -
Thus we ha\ie_cn = (o3, Y135 Yo4, Ya3) (K1, kz_, ]i:g, k4)T. But since ZZ =
al +BZ + BZ, we have Z7%=0aZ +BZ*+BZZ, so that co2 = avyaz +
By23 + B¥23. Therefore the reduced C-block test consists of verifying
that
(22 + B2 + B723)

(3.1) — (03, 713, Yo4, 723)[M (2)]a ™" (Y03, 113, You, ¥23) "
=0.

From a symbolic manipulation using Mathematica (see the algorithm
below), we can show that (3.1) is equivalent to

det[M (2)]¢1,2,3,4,6}
3.2 2 o =
(32) (@ + 180 = i
which is true by the fact that rank M (2) = 4. o

(Uniqueness) Observe that the relation ZZ = al + fZ + BZ must
induce in a proposed flat extension M (3) the relation ZZ 2= aZ+B7%+
BZZ, so the entries 23 and 714 are fully determined; namely,

0,

Yoz = aviz + Byis + Bz and 14 = ayos + Byos + Bz
But since o5 = (702, Y03, V12, Yoa) (1, k2, k3, k4)T, the block B is uniquely
determined. Consequently, the flat extension M (3) is unique.
Algorithm for the proof of (3.2):

I. Put vp0 := 1,701 = w, y11 = &, Y02 = 4,703 := P, V12 = ¢,
Yo4 ‘= S
- II. Calculate

711
=M e |

o o9
TN
i
W R
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III. Put

Yoo = ay11 + bye + 12

di(=m3) = ayo2 +byos + 12, d2(=Y13) = @Yoz + oz + b,

e1(= 723) = avi2 + cy22 + bdy, e2(= J23) = a2 + byaa + cd;
IV. Put

A = (a2 + bdy + cda) — (Fo3, €2, 704, d2) [M (2)]7 (Y03, €1, Y04, d1) 7,

det [M(2)](12,34,6)
det [M(?)]4 '
V. Factor [A — B]. Then we have A — B =0. O

B := (a + bc)

With a concrete example we will find the flat extension and the rep-
resenting measure for M(2) in Theorem 3.2.

; 1 5
EXAMPLE 3.3. Let 0 = L,vo1 = §,%2 = —3,711 = §,703 =
' - 51 25 59
—%,712 = %,%4 = 37,713 = —355, and vz = 55. Then
1 i _i _1 5 _1
i
i g _i i —4i i
3 1 4 _ 3
i 1 5 _3 i —
M= 2 ¢ & ¢ _» = |20
A
BT I G - &
i "2 32 3 3

rank M(2) =4 and ZZ = al + BZ + BZ, where a = % and 8 = —%i.
By Theorem 3.2, there exists the unique flat extension M(3) of M(2)

X 119i 853 1453
with yo3 = 1, Y14 = —% and vo5 = 53*- In fact,

v = ("5 2).

where ; _ ;
A o  _x A

52 3% 58 %

B=| & _H& & _&

T e

e e N Y

64 64 64 64

and ass  _481 351 601
TR U TR

C:=| &5 38 a8 '

28 MR a3

56 128 256 128



The quartic moment problem 735

To obtain the unique representing measure p, we proceed as follows,
remembering [6, Theorem 4.7]. Since M (3) is flat, it follows from [6,
Theorem 5.4] that M(3) has a unique flat extension M(4), which is
recursively generated by Proposition 1.1 (i). Thus the relation ZZ =
al+BZ+BZ implies Z7Z3 = aZ? + BZ3 + BZZ?, so that y34 = oy +
Braa + Brysz = L. Now observe that [M(3)]ana := [M(3)l{1,247) s
positive and invertible: for, if Z3 € (1,Z,Z?%) in CIM(3)]ana thED Z3 e (1
,Z,Z% in C M(3) by Extension Principle [10]. So (1.6) forces that the
number of atoms of any representing measure is less than or equals to
3, which is contradict to Theorem 3.2. Therefore Z4 e (1,2,7% 73)
in Cpy(q) because rankM(4) = 4. Thus this relation gives rise to the
polynomial equation

4 93 9 o 23 119
(3.3) 2= 162+64z 128_0’
which, by (1.6), is satisfied by every point in the support of u. Let
20,21, 22 and z3 be the roots of the equation in (3.3). Then they are
atoms of u. From [6, Theorem 4.7], we obtain the densities of u, say
po, p1, P2 and ps, solving the equation

-1

Po 1 1 1 1 Yoo
Pl _| %0 2 22 23 Yo1
P2 2 #z Y02
p3 A Y03
By a straightforward calculation, we obtain 29 = —1+ %, 71 =1+ i, 29 =

1(3—V/B8)i, 23 = §(3+/BB)i and py = p1 = },pp = YB3, py = ¥,
therefore p = ;<3 pidz;-

We now consider the case that rank M (2) = 5 with a weaker condition
than the dependence assumption in Problem 3.1.

THEOREM 3.4. If
(i) M(2) is positive,
(i) {1,2,Z,2% Z?} is a basis for Cpy(9), and
(i) ZZ € {1,2,2,2?),
then M (2) has a flat extension M(3).
Proof. We first claim
2Z€(1,2,2,2* = ZZ =al +BZ +BZ, (a €R,B€C).

To see this, suppose 27 = al + bZ + cZ + c_lZ_2 Since_zz(Z, Z) =0
implies (Z, Z) = 0, it follows that ZZ = a1 +bZ +¢Z + dZ?. Thus we
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have
(a—a)l +(b—8Z+ (c—b)Z +dzZ? - dZ? =0.

Since {1,Z, 7,72, Z*} is linearly independent, a = @,b = ¢,d = 0, which
proves our claim. By Theorem 1.3 (iv), M(2) admits a flat extension
M (3) if and only if there exists g5 for which

(3.4) (F03, 713, F04, 723, 705) [ M (2)] 115 5 4 6) (703,13 7, Yo4, 723, Y05) "
= aya2 + B3 + BYes,
where
Y23 = ay12 + Byes + Pvia.
Write M := [M(2)]{1,2,3,4,6}- Then
My —My Mz My Ms
—Myy My —M3zy My —Ms
(det M) -M~'=| Mg -Mys M —My Ms |,
—Myy Myy M3y My —Msy
Mys —Mzs M3zs —Mys  Mss

where M;; denotes the determinant of the cofactor of M with respect to
(4,7). Put y := ~vp5. Then (3.4) is equivalent to the equation:

Mss|yl? + (FosMs1 — F13Ms2 + JoaMss — F23Msa)y
+ (o3 M1s — 113 Mas + Yoa M35 — y23M4s)7
(3-5) = (det M)(aryz2 + Byas + B¥s) — (1vos* M + i3> Mas
+ 04> M3z + [23° Mas) + 2Re(v03¥13M12 — Yo3¥0a M3
+ 713504 M23 + Y03¥23M14 — V13723 Mag + Y0423 M34).

Since M is a self-adjoint matrix, it follows that M;j = Mji, so that the
equation (3.5) should be of the form Aly|?>+ By + Bj+C =0 (A > 0).
Therefore if

Apg(2) »= (the right-hand side of (3.5))
+ (Mss) " (Iv03Mas — 713 Mas + YoaMazs — Yoz Mys|?)

is positive, then the solution of the equation (3.5) forms a circle. But a
direct simplification using Mathematica (see the algorithm below) shows
that

(3.6) Ap) = (Mss) ™ (c + |8]%)(det M)?.
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It thus suffices to show that o + [ﬁiQ > 0. Indeed, in Cps(g), since
ZZ = al + BZ + BZ, we have y11 = ayoo + Bryo1 + Bo1, so that
a = (y00) " (711 — Byor — BAo1), which gives

a+181% = (v0) " (1 — Byor — B + 18I

2
_ — {701
= (00) " (lv/7008 — Y01/ v/00|%) + Do — yor

"o
det|M (2
= (v00) " (Iv¥008 — Yo1/v/00[") + e_t[?(%)]{—m >0
0

Algorithm for the proof of (3.6):

L Put o0 := 1,701 := w, 711 := Z,Y02 := 4,703 := P, V12 *= ¢,
Yo4 = S;
I1I. Calculate

Y11
=M e |

o o
7N
I
e Rege)

III. Put

Yo2 = ay11 + byiz + ¢z,
di(=m3) = avo2 + byos + cyi2,  da(= F13) = aFo2 + cHoz + b2,
e1(= 723) = ami2 + cy22 + bdi, e2(= F23) = a¥12 + by22 + cdy;

IV. Define M and M;;(1 < 4,5 < 5) as in the proof of Theorem 3.4;
V. Put

A = (det M)(aye + ber + cea)
— (Y03Y03M11 + d1daMaa + o404 M33 + €12 Mag)
+ (Yo3d2M12 — Y0304 M13 + d150a M23 + Yo3€2M14
— dyeaMaq + yose2 M34)
+ (d1703M21 — Y04Y03M31 + Yoad2 M3z + Yoze1 Ma
— dge1 Mys + Hoae1 My3)
+ (Y03 M15 — d1M2s + Yoa M35 — €1 Mys)
X (Yo3Ms1 — doMsz + o4 Ms3 — eaMs4)/ Mss,
B := (a + bc)(det M)?/Mss;
VI. Factor [A — B]. Then we have A — B = 0. O

REMARK 3.5. (i) Let p(z,2) = 22 —a — Bz — BZ. Then z € Z(p)
if and only if |z — 8|2 = a + |#2. By the above result, a + |8|? > 0.
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Thus the atoms of representing measure for ~ are contained in the circle
|2 = Bl = va+ |6

(ii) Note that Theorem 3.4 shows that if det M (2)112346) = 0 (ie.,
rank M(2) = 4), then the circle in the proof of Theorem 3.4 reduces to
the point (y03M15 — v13Mas + YoaM35 — Y23 Ma5)/Mss, and hence g5 is
uniquely determined, as we showed in Theorem 3.2.

The following example shows that Theorems 3.2 and 3.4 are still true
even though # = 0 and, in addition, gives a quartic moment matrix
whose atoms of the corresponding measure lie on the same circle regard-
less of rank.

ExAMPLE 3.6. First, we reconstruct a positive moment matrix M (2)
with rank M(2) = 4 that has a positive flat extension M(3). Let o0 =
L1 =1-%%2 = —2i,711 = 4,73 = 0,112 =4—44,74 = 8,713 = —8i
and 92 = 16. Then

1 1—2 1+4¢ =2 4 2i
1+1 4 2t 4-4i 4+ 4 0
]l 1=-% =2 4 0 4—4i 4441
M(2) = 2t 444 0 16 81 8 20
4 4-—-4i 4+4 -8 16 81
-2 0 4—4q 8 -8 16

and rank M(2) =4 and ZZ = al + $Z + 3Z, where « = 4 and 3 = 0.
By Theorem 3.2, there exists a unique flat extension M (3) of M (2) with
Y93 = 16 — 164, v14 = 0 and g5 = 18 — 164. In fact,

sz(Mm.B)

B* C
where
0 4 — 4z 4+ 44 0
—8¢ 16 & 8
B .= 8 -8 16 8
] 16—-16¢ 164+ 16 0 16 — 162
0 16 —16¢ 16 + 16¢ 0
16 — 16¢ 0 16 — 167 16 + 161
and

64 32 32 64
—-32; 64 32¢ 32
32 =327 64 32
—64: 32 327 64
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The same argument as Example 3.3 gives rise to the polynomial equation
244+ 4i2® - 16 =0.
By a straightforward calculation, we obtain
20 ~ —0.517638 + 1.93185¢,  po ~ 0.04588,

7 ~ 0.517638 — 1.931854, 1~ 0.45412,
70 ~ —1.93185 + 0.517638i,  pa ~ 0.04588,
23 ~ 1.93185 — 0.5176384, p3 ~ 0.45412.

Therefore p = > o<;<3 Pi0z-
Continuing this process we construct a positive moment matrix M (2)
with rank M(2) = 5. Let o4 = 4+ 2i. Then

1 1-i 144 -2 4 9
1+i 4 9% 4—4i 4+4i O
- -2 4 0 4d—4i 4+4i
M2)=1 "9 444 o0 6 8 4-2i |20
4 4 —4; 44+ 4: —817 16 o2}

-2 0 4—4 4420 -8 16

and ZZ = a1+087Z+087Z, where a = 4 and 3 = 0. By Theorem 3.4, there
exists a flat extension M (3) of M(2) with o3 = 16 — 16¢ and y14 = 0.
By the relation ZZ% = aZ + 322 + BZZ, we also have 33 = 64 and
724 = —32i. To make a flat extension M (3) of M(2), we must determine
~05. But from the proof of Theorem 3.4, o5 is contained in the circle

(3.7) Ivos — (17 — 9¢)| = 6.

If we choose o5 on the circle (3.7), then the remaining entries of M (3)
are fully determined by the choice of vp5. More precisely, if v5 = 17—3¢,
then ~15 = 16 + 8 and o = 37 — 36i. Therefore M (3) is of the form

me = ("2 2).

where
0 4 — 44 4+ 4 0
—81 16 &1 4—2
442 —81 16 1

B:=1 16_16i 16+ 16i 0 17+ 3i

0 16 — 16¢ 16 + 162 0
17 — 3¢ 0 16 — 16¢ 16 + 169

and
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64 32 16 —8 37+ 36i
c. | 8 64 32 16— 8i
T 16+8 32 64 32i

37—-36t 16+8 —32 64

To get the associated representing measure p, we proceed as follows,
remembering [6, Theorem 4.7]. Since M (3) is flat, [6, Theorem 5.4] gives
that M (3) has a unique flat extension M (4), which in turn has a unique
flat extension M (5), which is recursively generated by Proposition 1.1
(i). Thus the relation ZZ = a1 + 8Z + BZ implies ZZ% = aZ? + BZ3 +
BZZ2, so that y34 = aye3 + By24 + B3z = 64 — 64i. Now observe that
A = [M(4)]anal := [M(4)]{1,2,4,7,11} is positive and invertible: indeed,

1 1—29 ~2i 0 442
1+1 4 4—4 —8¢ 0
A= 2t 444 16 16 — 160 —32
0 8t 16 4 162 64 64 — 641
4 -2 0 32t -~ 64+ 64¢ 256

is positive and invertible. Therefore Z° € (1,7, 22,73, Z%) in Crms)
because rank M (4) = 5. Thus this relation gives rise to the polynomial
equation

1 3
25+ (5 + 5’) 44 5iz% — 1022 — (12 + 44)z — 32i = 0.

By a straightforward calculation, we obtain

2o ~ 0.822876 — 1.82288:, po =~ 0.44991,
21 ~ —1.82288 + 0.822876:, p1 ~ 0.03285,
z2 ~ 0.27601 — 1.87401¢, p2 ~ 0.07636,
z3 ~ —1.36214 + 2.48805¢, p3 ~ 0.04680,
z4 ~ 1.58613 — 1.114054, pa =~ 0.39408.

Therefore y = Zogig 4 Pi02;. Both the atoms of rank 4 and the atoms of
rank 5 are in the same circle |z| = 2.

4. Flat extensions of nonsingular quartic moment matrices

In this section, we consider the existence of flat extensions for non-
singular quartic moment matrices. In Section 1, we have known that if
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M(2) > 0, then [M(2); B(2)] is a flat extension of M(2) if and only if
c11 = c2 and ca1 = c32. Note that in B(2), we have ’

Z% = (Y03, 713, Y04, Y23, Y14, Y05)* and ZZ? = (712> Y22, 1135 F235 Y23, 114)” -
Then we get

11 (703, 713, Fod» F23, Y14, Yo5) M (2)~* Z3,

cn = (12,722, 13, V23, Y23, J14) M(2) 1 Z 22,

e = (F12,722, 13, V23, To3, T14) M (2) ™ Z3,

cs2 = (V12,713 Y22, Y14, V23, Y23) M (2) ™1 ZZ°.

PROPOSITION 4.1. Let M(2) > 0. Then M (2) admits a flat extension
M (3) if and only if there exist y23, Y14, Yo5 € C satisfying

(41) ( Y03, 713, Y04, 723> T14, T05) M (Y03, 713, Y04, 723+ V14, Y05)
= (F12, Y22, 713, V23, V23, T14) M (V12,7225 7135 V235 VY235 ’714)T

and

(4.2) (12, Y22, 713, 123 723, T14) M (Y03, 113, Y04, V23, 714, Y05)

= (Y12, 713, Y22, V14> V23, T23) M (712, 722, 713, T23, 123, Y14) "

where M := (det M (2)) M(2)~L.

Observe that the above system consists of two equations in ya3, Y14, Yos-
Thus we may put 23 = 0 for the solution of the above system. In fact,
M is the adjoint matrix of moment matrix M(2). So, we let

C11 €21 €31 C41 Cs51 Cel
Cc12 €22 C32 C42 Cs2 C62
M = C13 €23 €33 (€43 C53 (g3
Cl4 C24 C34 C44 Cs4 Cp4
C15 €25 €35 €45 €55 €65
Cl6 C26 €36 C46 Cs6 C66

where ¢;; is the cofactor of the i-th row j-th column entry of M(2),
i,7 =1,2,3,4,5,6. It is easy to see that ¢;; = ¢j;. Thus from (4.2), we
have

(4.3) (ce6714 + 01)Y05 = Coav1a? — [714]%cs6 + 02714 + 0314 + 04,
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where

61 = F12¢61 + Y22C62 + Y13C63,
2 = y12(c14 + co1) + v22(cas + c63) + V13(co2 + C34)
— Y12€51 — Y22C52 — Y13C53,
3 = — Y03C16 — Y13C26 — Y04C36;
04 = (v12¢11 + 113€12 + Y22€13)712 + (712€21 + Y22023) 722
+ (m2c31 +713¢32 + Y¥22€33 — F12€21 — V13€23) 713
— (F12¢11 + 722¢12 + Y13€13) Y03 — (F12€31 + Y22¢32 + F13€33) 7045

and from (4.1) we have

ces| 7052 + 2Re(v17v05) + 2Re(Y05714¢65)

(4.4) )
+ (655 — 666)|’714| + 2Re(l/2’)/14) +v3 =0,

where

V1 = Yo3¢ce1 + Y13C62 + Y04Ce3,
Vg = Y0351 + Y13C52 + Y0453 — Y12C61 — Y22C62 + Y13C63,
v3 = (|703l® — [i2l*)err + (Insl? — ¥32)e2 + (Iv0al® — Imsl*)eas
+ 2Re[(713703 — 122712)c21 + (V04703 — 713712)C31
+ (704713 — Y22713)C32]-
Thus, if there exist v14,705 € C satisfying (4.3) and (4.4), then M (2)
admits a flat extension M(3).

In the sequel, we consider the case that M (1) = I and y12 = 93 = 0.
Thus M (2) is of the form

0 1 0

0 0 0

0 0 0
Y22 Y31 Y40
Y13 Y22 Y31
Yo4 Y13 Y22

(4.5) M(2) =

O = OO O =
oo o RO
oo OoO OO

PROPOSITION 4.2. Let M(2) be a moment matrix as in (4.5). Then
M(2) > 0 if and only if

(i) v22 > 0,

(if) y222 — y22 — Iysl* > 0,

(iii) v22® — v22® — v22(|704* + 213/*) + [704]? + 2Re(v04731%) > 0.
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Proof. For the moment matrix M (2) in (4.5), it is positive and invert-
ible if and only if det[M(2)]4 > 0,det[M(2)]5 > 0, and det M(2) > 0. O

From (4.3) we have

2 2
_ ceav14” — cs6|714]” + C2aCH6

(4.6) Yos -
Co6714

Substituting (4.6) into (4.4) we can obtain

(@7) (lcas|? — |esel? + cos(css — cos))714]* + 2c22Re(cascseVay)
' — cagcs5ce6]v14]” + ca2®lese]? = 0.

ProproSITION 4.3. Let a € C, c € R and b > 0. Then the complex
equation |z|? — b|z — a| = ¢ has a solution if and only if the set

(4.7) Sy :={t e R* |c < #?, c—l|alb < t2=bt < |alb+c, |alb+e < t2+bt}

is not empty.

Proof. We know that the equation |z|? — b|z — a|] = ¢ has a solution
if and only if there is an w > 0 such that the following two circles
w—c

b

2| =vw and |z—a|=
intersect. This is equivalent to
w—2c

Vo — L < ol < Vi +

If we let ¢t := /w, then we have our conclusion. O

w—=cC

b

THEOREM 4.4. Let M(2) be a positive and nonsingular moment
matrix as in (4.5) and let

o €22€64C65

|cea]® — |ces|? + ces(css — ce6)’
b c22%|ces)?

|cea|? — |ces]? + ce6(css — co6)’
.. c22|ces| (lesal® — 1)

 |cea|? — |egs|? + ces(css — co6)

If the following set S; as (4.7) is not empty, then M(2) admits a flat
extension M (3).
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EXAMPLE 4.5. Assume 90 = 1,71 = 0,72 = 0,711 = 1,%3 =
0,72 =0,v04=1414,v73=2+1¢and y92 =4. Then

00 O 1 0
0 0 0 0
1 0 0 0
0 4 2-: 1—-2 |’
0 2447 4 2-1
0 0 147 247 4

M) =

QO et OO O =
(= elall S

which is positive and invertible. In fact, by Mathematica, the eigenvalues
of M(2) are

1 1
1, 1, 2, 8, 5(3—\/5), 5(3+\/5).

A straightforward calculation gives that a = —3 — 54,b = 98, and ¢ =
—510. But the set S; is empty. So, we can’t know whether M (2) admits
a flat extension M (3) or not by Theorem 4.4.

EXAMPLE 4.6. Assume Yoo = 1,’)’01 = 0,702 = 07’)’11 = 1,703 =
0,712 = 0,704 = 0,713 = 0 and 22 = 2. Then

100010
0100©00O0
001000
M(2) = 000200}
100020
00000 2

which is positive and invertible. In fact, by Mathematica, the eigenvalues
of M(2) are

1 1
1, 1, 2, 2 5(3—\/5), 5(_3+\/5).

Also a straightforward calculation gives that a = 0,b = 8 and ¢ = 0,
so Sy = {0,8}. Thus by Theorem 4.4, M(2) admits a flat extension
M (3). We now give a flat extension and the corresponding representing
measure. First of all, from (4.7), we obtain |y14|> = 8. We choose
Y14 = 2 + 2i. Then the extension [M(2); B(2)] is

M) = @ise) = ("5 8,
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where
0 0 0 0
0 2 0 0
0 0 2 0
B:= 0 0 2-2 0
24+ 2 0 0 2 — 24
0 242 0 0
and
8 0 0 -8
0 8 0 O
C= 0 08 O
8 0 0 8

To get the associated representing measure u, we proceed as follows,
remembering [6, Theorem 4.7]. Since M (3) is flat, [6, Theorem 5.4] gives
that M (3) has a unique flat extension M (4), which in turn has a unique
flat extension M(5), which in turn has a unique flat extension M (6),
which is recursively generated by Proposition 1.1 (i). Now observe that
A = [M(5)]anal := [M(5)]{1,2,4,7,11,16} Is positive and invertible: indeed,

1 0 0 0 0 0

0 1 0 0 242 0
A= 0 0 2 0 0 12 +12¢

0 0 0 4 0 0

0 2—2¢ 0 0 40 0

0 0 12-12¢ 0 0 208

is positive and invertible. In fact, by Mathematica, the eigenvalues of A
are '

1 1 128
1, 4, —(41 — v/1553), =(41 + V1553), ———— 105 + v/10897.
5 ) 3 ) 105 + +/10897

Therefore we have that Z% ¢ (1,2,22,23,24,25) in Ch () because rank
A = 6. Thus this relation gives rise to the polynomial equation

25— (84 8i)2* -~ 8 =0.
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By a straightforward calculation, we obtain

20 ~ 0.618034 — 0.618034i,  pp ~ 0.315738,
21 ~ —1.61803 — 1.61803i,  py ~ 0.0175955,
20 & —0.84425 — 0.226216i,  po ~ 0.315738,
23 ~ 2.21028 + 0.592242, p3 ~ 0.0175955,
24 ~ —0.592242 — 2.21028i,  pa =~ 0.0175955,
25 2 0.226216 + 0.844251, ps ~ 0.315738.
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