DOI QR코드

DOI QR Code

THE QUARTIC MOMENT PROBLEM

  • Li, Chun-Ji (Institute of System Science College of Sciences Northeastern University) ;
  • Lee, Sang-Hoon (Department of Mathematics University of Iowa)
  • Published : 2005.07.01

Abstract

In this paper, we consider the quartic moment problem suggested by Curto-Fialkow[6]. Given complex numbers $\gamma{\equiv}{\gamma}^{(4)}\;:\;{\gamma00},\;{\gamma01},\;{\gamma10},\;{\gamma01},\;{\gamma11},\;{\gamma20},\;{\gamma03},\;{\gamma12},\;{\gamma21},\;{\gamma30},\;{\gamma04},\;{\gamma13},\;{\gamma22},\;{\gamma31},\;{\gamma40}$, with ${\gamma00},\;>0\;and\;{\gamma}_{ji}={\gamma}_{ij}$ we discuss the conditions for the existence of a positive Borel measure ${\mu}$, supported in the complex plane C such that ${\gamma}_{ij}=\int\;\={z}^i\;z^j\;d{\mu}(0{\leq}i+j{\leq}4)$. We obtain sufficient conditions for flat extension of the quartic moment matrix M(2). Moreover, we examine the existence of flat extensions for nonsingular positive quartic moment matrices M(2).

Keywords

References

  1. R. Curto, Joint hyponormality: A bridge between hyponormality and subnormality, Proc. Sympos. Pure Math. 51 (1990), Part II, 69-91
  2. R. Curto. An operator theoretic approach to truncated moment problems, Linear Operators Banach Center Publications 38 (1997), 75-104 https://doi.org/10.4064/-38-1-75-104
  3. R. Curto and L. Fialkow, Recursively generated weighted shifts and the subnormal completion problem, I, Integral Equations Operator Theory 17 (1993), 202-246 https://doi.org/10.1007/BF01200218
  4. R. Curto and L. Fialkow, Recursively generated weighted shifts and the subnormal completion prob- lem, II, Integral Equations Operator Theory 18 (1994), 369-426 https://doi.org/10.1007/BF01200183
  5. R. Curto and L. Fialkow, Recursiveness, positivity, and truncated moment problems, Houston J. Math. 17 (1991), 603-635
  6. R. Curto and L. Fialkow, Solution of the truncated complex moment problems for flat data, Mem. Amer. Math. Soc. 568 (1996), 603-635
  7. R. Curto and L. Fialkow, Flat extensions of positive moment matrices: Relations in analytic or conjugate terms, Oper. Theory Adv. Appl. 104 (1998), 59-82
  8. R. Curto and L. Fialkow, Flat extensions of positive moment matrices: Recursively generated re-lations, Mem. Amer. Math. Soc. 136 (1998)
  9. R. Curto and L. Fialkow, Solution of the singular quartic moment problem, J. Operator Theory 48 (2002), 315-354
  10. L. Fialkow, Positivity, extensions and the truncated complex moment problem, Contemp. Math. 185, Amer. Math. Soc. 119 (1995), 133-150 https://doi.org/10.1090/conm/185/02152
  11. L. Fialkow, Positivity, extensions and the truncated complex moment problem, Amer. Math. Soc. 119 (1995), 133-150
  12. J. Shohat and J. Tamarkin, The problem of moments, Math. Surveys Monogr. 1943
  13. J. Smul'jan, An operator Hellinger integral (Russian), Mat. Sb. 91 (1959), 381- 430
  14. Wolfram Research, Inc. Mathematica, Version 5.0, Wolfram Research Inc., Champaign, IL, 2003

Cited by

  1. A Cyclic Subnormal Completion of Complex Data vol.54, pp.2, 2014, https://doi.org/10.5666/KMJ.2014.54.2.157
  2. Positivity of Riesz functionals and solutions of quadratic and quartic moment problems vol.258, pp.1, 2010, https://doi.org/10.1016/j.jfa.2009.09.015