A NOTE ON SINGULAR QUARTIC MOMENT PROBLEM

  • Li, Chun-Ji (Department of Mathematics, Yanbian University)
  • Published : 2000.02.01

Abstract

Let ${\gamma}{\equiv}{\gamma}^{(2n)}$ denote a sequence of complex numbers ${\gamma}{00},{\gamma}{01},\cdots,{\gamma}0, 2n,...,{\gamma}{2n},0\;with\; {\gamma}{00}\;>\;0,{\gamma}{ji}={{\overline}{\gamma_{ij}}}$,and let K denote a closed subset of the complex plane C. The truncated K complex moment problem entails finding a positive Borel measure $\mu$ such that ${\gamma}{ij}={\int}{{\overline}{z}}^{i}z^{j}d{\mu}\;(0{\leq}\;i+j\;{\leq}\;2n)$ and supp ${\mu}{\subseteq}\;K$. If n=2, then is called the quartic moment problem. In this paper, we give partial solutions for the singular quartic moment problem with rank M(2)=5 and ${{\overline}{Z}}Z{\in}\;<1,Z,{{\overline}{Z}},Z^{2},{{\overline}{Z}}^2>$.

Keywords

References

  1. Proc. Symp. Pure Math. Part 2 v.51 Jointly Hyponormality: A bridge between hyponormality and subnormality R.E. Curto
  2. Linear Operators Banach Center Publications v.38 An operator-theoretic approach to truncated moment problems
  3. Integr. Equat. Oper. Th. v.17 Recursively generated weighted shifts and the subnormal completion problem R.E. Curto;L.A. Fialkow
  4. Integr. Equat. Oper. Th. v.18 Recursively generated weighted shifts and the subnormal completion problem, II
  5. Houston J. Math. v.17 Recursiveness, positivity, and truncated moment problems
  6. Mem. Amer. Math. Soc. v.119 Solution of the truncated complex moment problem for flat data
  7. Operator Theory Adv. Appl. v.104 Flat extensions of positive moment matrices: Relations in analytic or conjugate terms
  8. Mem. Amer. Math. Soc. v.136 Flat extensions of positive mement matrices: Recursively generated relations
  9. Trans. Amer. Math. Soc. The truncated complex K-moment problem
  10. Amer. Math. Soc. v.119 Positivity, extensions and the truncated complex moment problem L. Fialkow
  11. The quartic moment problem Il Bong Jung;Sang Hoon Lee;Woo Young Lee;Chunji Li
  12. The Mathematica Book(3rd, ed.) Stephen Wolfram