• Title/Summary/Keyword: Besov functions

Search Result 15, Processing Time 0.026 seconds

THE BESOV SPACES OF M-HARMONIC FUNCTIONS

  • Lee, Jin-Kee
    • East Asian mathematical journal
    • /
    • v.19 no.1
    • /
    • pp.121-131
    • /
    • 2003
  • We extend the characterization for the analytic Besov space obtained by Nowak to the invariant harmonic Besov space.

  • PDF

SLICE REGULAR BESOV SPACES OF HYPERHOLOMORPHIC FUNCTIONS AND COMPOSITION OPERATORS

  • Kumar, Sanjay;Manzoor, Khalid
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.651-669
    • /
    • 2021
  • In this paper, we investigate some basic results on the slice regular Besov spaces of hyperholomorphic functions on the unit ball 𝔹. We also characterize the boundedness, compactness and find the essential norm estimates for composition operators between these spaces.

LITTLEWOOD-PALEY TYPE ESTIMATES FOR BESOV SPACES ON A CUBE BY WAVELET COEFFLCIENTS

  • Kim, Dai-Gyoung
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.6
    • /
    • pp.1075-1090
    • /
    • 1999
  • This paper deals with Littlewood-Paley type estimates of the Besov spaces {{{{ { B}`_{p,q } ^{$\alpha$ } }}}} on the d-dimensional unit cube for 0< p,q<$\infty$ by two certain classes. These classes are including biorthogonal wavelet systems or dual multiscale systems but not necessarily obtained as the dilates or translates of certain fixed functions. The main assumptions are local supports of both classes, sufficient smoothness for one class, and sufficiently many vanishing moments for the other class. With these estimates, we characterize the Besov spaces by coefficient norms of decompositions with respect to biorthogonal wavelet systems on the cube.

  • PDF

NONLINEAR HEAT EQUATIONS WITH TRANSCENDENTAL NONLINEARITY IN BESOV SPACES

  • Pak, Hee Chul;Chang, Sang-Hoon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.773-784
    • /
    • 2010
  • The existence of solutions in Besov spaces for nonlinear heat equations having transcendental nonlinearity: $$\frac{\partial}{{\partial}t}u-{\Delta}u=F(u)$$ is investigated. In particular, it is proved the local existence and blow-up phenomena of the solutions in Besov spaces for nonlinear heat equations corresponding to two transcendental nonlinear functions $F(u){\equiv}{\mid}u{\mid}e^{u^2}$ and $F(u){\equiv}e^u$ of rapid growth.

Lp-boundedness (1 ≤ p ≤ ∞) for Bergman Projection on a Class of Convex Domains of Infinite Type in ℂ2

  • Ly Kim Ha
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.3
    • /
    • pp.413-424
    • /
    • 2023
  • The main purpose of this paper is to show that over a large class of bounded domains Ω ⊂ ℂ2, for 1 < p < ∞, the Bergman projection 𝓟 is bounded from Lp(Ω, dV ) to the Bergman space Ap(Ω); from L(Ω) to the holomorphic Bloch space BlHol(Ω); and from L1(Ω, P(z, z)dV) to the holomorphic Besov space Besov(Ω), where P(ζ, z) is the Bergman kernel for Ω.

A NOTE OF LITTLEWOOD-PALEY FUNCTIONS ON TRIEBEL-LIZORKIN SPACES

  • Liu, Feng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.659-672
    • /
    • 2018
  • In this note we prove that several classes of Littlewood-Paley square operators defined by the kernels without any regularity are bounded on Triebel-Lizorkin spaces $F^{p,q}_{\alpha}({\mathbb{R}}^n)$ and Besov spaces $B^{p,q}_{\alpha}({\mathbb{R}}^n)$ for 0 < ${\alpha}$ < 1 and 1 < p, q < ${\infty}$.

Wavelet Estimation of Regression Functions with Errors in Variables

  • Kim, Woo-Chul;Koo, Ja-Yong
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.3
    • /
    • pp.849-860
    • /
    • 1999
  • This paper addresses the issue of estimating regression function with errors in variables using wavelets. We adopt a nonparametric approach in assuming that the regression function has no specific parametric form, To account for errors in covariates deconvolution is involved in the construction of a new class of linear wavelet estimators. using the wavelet characterization of Besov spaces the question of regression estimation with Besov constraint can be reduced to a problem in a space of sequences. Rates of convergence are studied over Besov function classes $B_{spq}$ using $L_2$ error measure. It is shown that the rates of convergence depend on the smoothness s of the regression function and the decay rate of characteristic function of the contaminating error.

  • PDF