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LP SMOOTHNESS ON TRIEBEL-LIZORKIN SPACES
IN TERMS OF SHARP MAXIMAL FUNCTIONS

Dedicated to Professor Jong-Uk Ham in celebration of
his 60th birthday and in prayer for his recovery

Yong-KuMm CHO *

ABsTRACT. Taking into account the smoothness determined by sharp
maximal functions, Sobolev type embedding results on Triebel-Lizorkin
and Besov spaces are obtained.

1. Introduction

The primary purpose of this paper is to study the extent of smooth-
ness determined by the condition f! € LP(R") in which f} stands for
the sharp maximal function, associated to a locally integrable function
fonR™ and 0 < @ <1, defined by the formula

) f@=swe [ (i) -ma)|d,
>0 B(z,t)

where B(z,t) denotes the open ball of radius ¢ > 0 with center at

z € R™ and my(z) the average of f over B(z,t).

The maximal operators (1-1) are introduced by A. P. Calderén and
R. Scott [3] in their work on extending Sobolev type inequalities to
LP + L9 gpaces.

Regarding the degree of smoothness determined by a, it is well-
known that fou = f¥, often referred to as the sharp function in the
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theory of BMO space, and ||f|laMo = ||f *|loo - In the case of a =1,
it is shown in the paper [3] that ||f}l, ~ [|Vfll,® for 1 < p < o0
and Coifman et. al. [6] recently extended it further to HP spaces,
1flp ~ IV fllae for n/(n+1) <p<1.When 0 < a <1, it is plain
that
(1-2)

i/p
igte < 6 ([ [ HETO daay) ™, 1<p<o,

the right side of which defines the norm for the homogeneous Sobolev
space Waer,

As to the embedding question in terms of the maximal functions
(1-1), Calderén and Scott proved the pointwise inequality

(1-3) i) < Cala (FfH)(x), O0<a<l,

where I, denotes the Riesz potential of order « (also valid for a =1 if
n > 2). Combined with the celebrated inequality of C. Fefferman and
E. M. Stein [7]

(1-4) Iflle < Cpllf*llp, 1<p<oo,

the inequality (1-3) gives sharper versions of Sobolev theorems on ac-
count of the known facts about Riesz potentials. However, we notice
that the resulting embedding theorem is valid only in the range of
1 < p < nf/a and it appears that the other cases are not completely
known even on LP spaces.

In the present article, we set forth Triebel-Lizorkin and Besov spaces
as the appropriate target spaces in consideration of the following rea-
sons : First, those spaces generalize most of classical function spaces
including L?, H?, BMO and Lipschitz spaces. Second, the current trend

(I)Throughout this paper, this means that the two norms are equivalent:

CLIVHle < Iflle < C2 1V Fllp -

592



Sharp maximal functions

shows that those are becoming more important in the theory of partial
differential equations. Third, methodologically, those function spaces
are definable in terms of certain dyadic maximal functions involving
convolution family { f * ¢k }xez and it is relatively easy to majorize
them by f# via moment cancellations alluded to .

Our results will contain the complete answer to LP embedding ques-
tion in the full admissible range n/(n + a) < p < co. In addition, we
obtain an extension and another proof of the inequality (1-4).

2. Inequalities on Triebel-Lizorkin and Besov Spaces

In accordance with Peetre [12], we begin with setting the following
notations. For any Schwartz function ¢ on R™ such that

supp(¢) C {1/2< /€| <2} and |$(€)] > c¢>0 if 3/5< ¢ <5/3

we put ¢, (z) = 2“" ¢(2" z) for each integer v.(2) For each tempered
distribution f on R® and € R, A > 0, let

@ f (@) = sup. 28| gy x f(z—y)| (1+2"]y])
(2-1)

1/q
¢ f(z) = <Z|¢ f ()] ) , 0<g<oo

veZ
with the obvious £*° norm for ¢ = 0. _
The homogeneous Triebel-Lizorkin spaces Fpﬂ 9 and the Besov spaces

Bf’q are the spaces of tempered distributions with the finite quasi-
norms

KKk n
Hf”ppﬁvq = ||¢** fll, for m )
1/q n
(2-2) Ifllgsa = (Z H¢Z*fHZ) for A>~—,
VEZ p

()Note that ¢ itself can not have a compact support due to a version of Paley-
Wiener theorem.
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where 0 < p < 0, 0 < ¢ < o0 and B € R (Once again, the case
of ¢ = oo must be interpreted as the £°° norm). In the limiting case
of p= 00, the ¢>*f(z) in (2-1) are replaced by non-maximal versions
ovh | v * f(x) i and the other formulations remain unchanged.

To state some of standard identifications of Triebel-Lizorkin spaces,

20,2

Fj*~IP, 1<p<oo,

50,2

F,“~HP, 0<p<l1,
(2-3) E%2? ~ BMO, FP® ~ Ag, 8>0,
which are obtainable by Littlewood-Paley theory. In general, Bf’q
coincides with the generalized Lipschitz spaces (see [13] for instance).
There are various duality theorems such as (Fpﬁ’q ) o~ Fp,_ﬂ 9 for

1 < p,q < oo, where p/,q denote the Holder conjugate exponents of

D,q
The main theorem of this section reads as follows.

THEOREM A. Let «, 3 be real numbers satisfying 0 < a <1, a>
B. Suppose that |{|f| > €}| < oo for every € >0 and f} € LP for
n/(n+ a) <p<n/(a—p). Then for each 0 < ¢ < 0,

(2-4) 1 flgpe < ClFdllp, 1/r=1/p—(a=B)/n.
Indeed, with the above exponents p, r and reals o, B3,if 0 < ¢<1,
(2-5)

¢ f@) < CIF (@], A>max (n+a,n/g).
REMARK 1. The condition that |{|f] > ¢} | < co for every € >0

is clearly necessary. It is plain to observe that f} € LP only if p >
n/(n+ a) under this condition.

In order to prove the theorem, we shall need a chain of lemmas.
LEMMA 2.1. There exist Schwartz functions o, ¢ on R™ such that
(1) supp (o) c {|z| <1}, &(0)=0,
(2) supp ¢) c {1/2 < |6l <2} and |§(€)] 2 >0 if 3/5< ¢ <5/3

3) ) & (277¢) =1, £#0.

vEZ
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For such a pair and for each z € R™, whenever f is a tempered distribu-
tion, ¢** f(z) < Co** f(z), provided 8 <1,A>0and 0<qg<1.

The proof of this lemma is based in turn on the following

LEMMA 2.2. (cf. [4]) Let ¢ be a Schwartz function on R™ such that

d3 has a compact support away from the origin and A\ > 0. For all
integers v, u,

(2-6)

/|¢#*¢u<y>|<1+2"|y|) dy < Cp2/~# (L+277#)7FFom

where m is a positive integer with m > A/2+n/4 and k is any positive
integer.

Proof. It will be a minor modification of Lemma 4.2 in Calderén and
Torchinsky [4], pp. 22-23. We claim that for any X >0,

JA=/I¢u*¢u(w) 2 (142"

< Cp 2un+2(u—u) (1+2u—”)—2(k—2m)

for every positive integer k£ and m with m > A/4. Once the claim were
verified, then for é > n, by the Cauchy-Schwartz inequality,

1/2
[ 16w stz b d < 2 ([ 02w )

< covn? J21,<ia ;

whence the assertion (2-6) follows. For the claim, changing variables,
we have

J,\=2“"/|¢*¢>”_,,(:c)]2 (1+z]) dz.

Observing (1 + |x|))‘ <221+ |:L'[2m)2 and invoking Plancherel’s the-
orem, we get

2

nzern [las-am d@se s o,
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where A denotes the Laplacian. For any multi-index v and positive
integer k, note that

ID”’&(@‘ < Cr(1+|z))7F, ‘q@(z)! < Cyla| (1+ |z])7*,

where the second inequality follows after applying the mean value the-
orem. Hence

|1+ (=8)™) d(2) & (227 2) |
< Cp |2 Hz| (14207 |:c|)_k
+ 3 G2l (1 2vrg])TE

[vi<2m

Since 43 has a compact support away from the origin, we obtain the
claim upon collecting these estimates. g

Proof of Lemma 2.1. The existence of such a pair is well knowmn.
For the last estimate, start with the identity ¢, *f =3 7 (0, * f) *
(¢u * @) to majorize

2”ﬁ|¢#*f(a:—z)|

<320 [loxfla—z=9)l 162 0ul0)| dy

VvEZ

<@+ 212 Yo fa) x

veZ
(1427 8 [ g, 00,0 0+ 27 ) dy,
where we have used the inequality (see {12])

max (1+a+b1+ab) < 1+a)(1+0b), a,b>0.
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It follows that ¢}* f (z) is bounded by, according to Lemma 2.2,

S o f(z) (L+ 200yt 2 ‘”‘““’/|¢u*¢u(y)l(1+2”iy|) dy

veZ

< Ck Z ot f (z) 9(v—p)(1-5) (1 + 2u—u)—k+2m+)\
veZ

=Ck > o) f(@) oy

VEZ

Choosing k so large that &k > 2m + A — 3+ 1, we have
Z Qg_# < Z 9= (u=v)(1-B)q 4 Z =) (k=2m=2+B-1)7 < O « o0

HEZ u>v u<v

forany 3<1 and ¢ >0.Nowfor 0 <¢g<1 andfor f<1,

q
Yo [erf@]'<cd (Z a;*f(x)ny_,,)

HeZ HEZ \veZ
<CY oy f@) |0l
veZ HEZ
< C7j£: **f $)]q
veZ
which yields the asserted inequality. 0

LemMMA 2.3. For the same o as in Lemma 2.1 and for f € L} _(R"),
if f} € LP for some p > 0, then for each z € R® and A > n+a, v € Z,
(27)
53 F (&) < o min (27D £ (a), 27 =B=n/D) |11, )
Proof. Making use of the inequality ([4], pp. 12)
kad s
-A —k
1+ <32 X(gm) . >0, A>0,
k=1
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where x denotes the characteristic function of the unit interval [0,1],
we obtain

or* f(z) = sup 2P o, x f(y)| (1 +2" |z -y

yERP
0o |:l! yl
y vB—k LA
(2-8) < ,?:1 2 yséln% o * f(y)] x [2_V+k/)\] .

For each y € B (z, 277**/}) | using the fact that o is supported in the
unit ball, combined with (0) = 0, we proceed to estimate

low = f ()]
< /B o [0y =) (1) = mamvir (@] 02

<

- /B(z,z—v(1+2kfx))

nta
< loloo 27 (1422) 7 £ ().

|cr,,(y - z) [f(z) - m2_.,(1+2k/,\)(:c) H dz

Since the sum

[o.¢]

> k(1 +2’“/*)n+a < Cpa <
k=1

whenever A > n+a, we get 02* f (z) < Cno2 @A) fi(z).

To prove the other half of (2-7), for any y € R™, fix a point 2 €
B(y, 27%) momentarily to get |0, * f (¥) | < |lofloo 2"T2277* f1 (2)
and then integrate over the ball B(y, 27) with respect to dz af-
ter raising this inequality to the pth power to obtain |, * f(y)| <
Cra27v2Fvn/P|| 74|, . Inserting into (2-8), we are led to the desired
estimate

03" §(2) < Cua 27072 | 11, 5
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Proof of Theorem A. The inequality (2-4) can be obtained from (2-
5) by integration when 0 < ¢ < 1. In the case when 1 < ¢ < 00, (2-4)
follows from the case ¢ =1 by the trivial embedding

”f”ﬁvpﬂm < ”f“ppB,qU 0<q15q2§oo,p>0,,3€R.

Thus it suffices to prove the pointwise estimate (2-5). Applying Lemma
2.1 and Lemma 2.3, we observe that for any s > 0, [¢** f(z)]? is
dominated by

[J** f(a:)]" <C [fo'f (x)]qz 9-v(a=Pfq 4 ¢ ”fcfngz o—v(a—B-n/p)q

v>s v<s

< c{[f@]" a7 +|fHigacerrD Y,

where A = 27° and we have used the condition 0 < o — f# < n/p
that guarantees the convergence in the last inequality. Now set A =

IFBIE™ [£4 ()] ™™ to deduce the inequality (2-5). O

COROLLARY 2.4. Let 0 < a <1, a>f8,and n/(n+a) <p<
n/(a—p). Assume that | {|f| > €} | < oo for every € > 0.If flelr,
then

(2-8) 1flgee < Clfalles Yr=1/p~(a=pB)/n,
foreach r < ¢ < .

The assertion follows immediately from Theorem A in view of the
embedding inequality

”f”Bf'q < ”f“ﬁ‘pa"?a 0<p<qg<Loo, :BER,

which essentially results from the integral inequality of Minkowski.

COROLLARY 2.5. Suppose that |{|f| > €} | < oo for every € > 0.

Let 0 < 8 <n and ft € LP for 1 < p < n/B.®® Then for all
0<g< o0,

(2-10) Iflp-s0 < ClUfHlp, 1/r=1/p—B/n.
(3)If 3= 10, then we take 1 < p < c0.
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REMARK 2. Taking =0 and ¢ = 2, we get (1-4), the inequality
of C. Fefferman and E. M. Stein. This inequality is also proved by
Calderén and Scott [3]. Proofs of the two are based on weak-type
estimates involving Hardy-Littlewood maximal function.

We finally state the LP version of Theorem A to see how it improves
the result (1-3) of Calderén and Scott.

COROLLARY 2.6. Suppose that | {If] > €} | < oo for every € > 0
and fl € LP for 0<a <1 and n/(n+a) <p<n/a. Then

(2-11) 17l- < Cllfdllp, 1/r=1/p—afn.

3. BMO and Lipschitz estmates

The foregoing machinery breaks down when p > n/(a — ). An
inspection shows that the number p = n/a plays the role of critical
indez (or end point), which makes our consideration of 3 in the cases
p > n/a unnecessary. However, we observe from (2-7) that

(31 Mlpg-rme =Wflau_,y, S Clfdllp, n/a<p<oco.
Moreover, if f satisfies that for 0 < @ <1,
(3-2) |f(.7:)—f(y)|§B|:n—y|" for all z,y€R",

then it is straightforward to note that ||f}l|lcc < Cn B and thus
If Moo < Crllfll A, - Consequently, we have the following result:

THEOREM B. Suppose that | {Ifl >¢€} | < oo for every € > 0. Let
0<a<land f! € LP for nfa <p<oo. Then f € A(a_n/p) with

_ . #
(33) £l rery < C 5L
Furthermore, in the case of 0 < a < 1, we have the equivalence
(3-4) 1f oo ~ I fll4, -

It remains to examine the critical case p =n/a.
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THEOREM C. Suppose that |{|f| > €}| < oo for every € > 0.

Let 0 < o < 1 and assume that f! € LP(R™) for p = n/a. Then
f € BMO(R™) with

(3-5) IflBMo < Crya I Fllp-

Proof. Let z € R™ and p > 0. Fixapoint z € B(z, p) momentarily.
It follows from the inclusion B(z,p) C B(z,2p) that

/ | F@) = my(2) | dy < (1+27) / | F(y) — map(2) | dy
B(z,p) B(z,2p)

< 2% (14 27) ™t £l (2).

As before, raise this inequality to the power p and integrate over B(z, p)
with respect to dz to obtain

o / | £(¥) = mp(@) | dy < Cr 1Ll
B(z,p)

whence f¥#(z) < Cyp.allf}|, and the desired result follows. a

We end this paper with listing a couple of applications. On account
of our discussions in the introduction, we first have

THEOREM D. Let f € L} _(R") with Vf € HP(R") for n/(n+1) <
p<oo.

(D1) If n/(n+1) <p<n/(1-p) for —-n < B <1 and 1/r =
1/p— (1~ pB)/n, then

Iflgga < CNVSllge forall 0<gq<oo,
Ifllgsa < CIVSflge forall r<q<oo.

(D2) If p=mn, then ||flBmo < C || Vf ”H" -
(D3) If n<p<oo, then |flly, = <CIVSlgs-

Next with the notation

f@ = fP ,
(3—6 ap (//R"x]R" !z yl"*“P de'dy , 1 Sp< 00

and the obvious modification when p = oo, we have
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THEOREM E. Let 0 < a < 1 and assume f € W“J’(R") for 1 <
p< oo,

(El) If1<p<n/(a—p) for -n+a<f<a and 1/r=1/p—
(a — B)/n, then

£l .0 Slelam forall 0<g<oo,
”f”Bf"'SCIflap for all r<g<oo.

(E2) If p=n/a, then |flsmo < C|fl, /0

EPILOGUE. To our great sorrow, Professor Ham passed away on Feb-
ruary 2, 1998 at the age of 60. With many collegues and students,
we deeply honor what he had done for us, especially his teaching and
friendship, which have been influencing us and will do so forever.
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