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LITTLEWOOD-PALEY TYPE ESTIMATES
FOR BESOV SPACES ON A CUBE
BY WAVELET COEFFICIENTS

DAr-Gyounc Kim

ABSTRACT. This paper deals with Littlewood-Paley type estimates
of the Besov spaces Bg, on the d-dimensional unit cube for 0 <
D, q < oo by two certain classes. These classes are including biorthog-
onal wavelet systems or dual multiscale systems but not necessar-
ily obtained as the dilates or translates of certain fixed functions.
The main assumptions are local supports of both classes, sufficient
smoothness for one class, and sufficiently many vanishing moments
for the other class. With these estimates, we characterize the Besov
spaces by coefficient norms of decompositions with respect to biorthog-
onal wavelet systems on the cube.

1. Introduction

For practical applications, many researchers [1, 4, 6, 20, 22] have con-
structed wavelet bases on a closed interval or cube Q with the standard
wavelet theory on the real line R. Their constructions provide a wavelet
decomposition of the space Ly(2). Some of them [6, 22} concerned with
wavelet bases characterizing Holder-Zygmund spaces C*(£2). We observe
that their characterizations can be described in terms of Littlewood-
Paley expressions with wavelet coefficients.

Littlewood-Paley type characterization {16, 17] for a function space by
wavelets is useful in not only theory but also many applications. Once
such a characterization is established, the smoothness and local property
of a given function can be described by the size or the decay of wavelet
coefficients. In addition, the characterization ensures that wavelets form

Received January 12, 1999.

1991 Mathematics Subject Classification: 41A17, 41A30, 42C15, 43A32, 46A45.

Key words and phrases: Besov spaces, Littlewood-Paley estimates, wavelet de-
compositions, biorthogonal wavelets.

This study is supported by KOSEF 97-07-01-01-01-3.



1076 Dai-Gyoung Kim

an unconditional basis for many function spaces. In applications to
numerical solutions to differential equations, specifically, elliptic differ-
ential equations, the characterization of Sobolev spaces with wavelet co-
efficients offers a good preconditioner (that produces uniformly bounded
condition numbers) and an adaptive algorithm (see, for example, [11, 7)).
In particular, the characterization based on a wavelet decomposition im-
plicitly provides an optimal algorithm of compression [8, 9] for a certain
large class of spaces such as Besov spaces.

Besov spaces include several function spaces such as Sobolev spaces
H* and Hélder-Zygmund spaces (23, 17] as well as have many applica-
tions to approximation theory [10] and to the study of partial differential
equations [2, 12]. The definition of these spaces will be briefly reviewed
in Section 2.

R. DeVore et al. [9, 13] have provided the coefficient characteriza-
tion of Besov spaces on d-dimensional unit cube  with B-splines and
wavelets. Their wavelet coefficients are however implicitly defined via a
certain extension method such as quasi-interpolants (see, for example,
[13, 3]), so that it is very difficult to obtain the dual wavelet basis cor-
responding to the coefficients, especially near the boundaries of . We
have recently found the report by A. Cohen et al. [5] where biorthogonal
wavelet systems for rather general domain are concerned and some ap-
proximation properties of the multiresolution analysis on the domain are
considered for the characterization of Besov spaces. The characteriza-
tions of this present paper are independently studied (see [19]) and also
are vaild for general classes of functions with local supports but without
being necessarily obtained as the dilates or translates of certain fixed
functions. Moreover, our characterizations can be trivially extended for
general domains such as a bounded, simply connected domain satisfying
the uniform cone condition [15] (examine the estimates of this paper).

In Section 3, we establish Littlewood-Paley type estimates for Besov
spaces By, 0 < a,p,q < oo, on the cube Q2 by coefficients norms of
decompositions with respect to two certain classes. These classes are
including biorthogonal wavelet systems or dual multiscale systems (pos-
sibly, multiwavelet systems) but not necessarily obtained as the dilates
or translates of fixed functions. The main assumptions are local sup-
ports (with correct scaling in certain norms) of both classes, sufficient
smoothness for one class, and sufficiently many vanishing moments for

the other class. When p < 1, we establish the estimates for the family
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Bg, of Besov spaces with ¢ > (a/d+1)~! which has specific applications
to nonlinear approximation theory (see [14, 9, 12]). Using our estimates,
in the final section, we characterize Besov spaces with wavelet coefficients
of the decomposition by biorthogonal wavelet systems on 2.

2. Preliminaries

This section briefly reviews the main idea of wavelet bases on [0, 1]
from [1, 4, 6] as well as the definitions of Besov spaces and sequence
spaces from [23, 17]. It is assumed that the standard wavelet theory and
multiresolution analysis of Ly(IR) are well understood.

One of the main different features of multiresolution analysis on the
interval from those on R is caused by that the space Ly({0, 1]) is not
translation and dilation invariant. One [4, 6] starts from an initial closed
subspace Vj, of Ls([0, 1]) at a certain level ky > 0 and investigates closed
subspaces V; only for k > kg such that

(2.1) Vi C Vk+1 and U Vi, = Lg([O, 1])

k>ko

where the closure is in L,([0,1]). The closed space V; can be obtained
by a finite set of dyadic translations ¢y ; := 2¥/2¢(2% - —5) of a standard
scaling function ¢ in the interior and certain edge functions ¢ , adapted
from a set {¢y ;} near the edges. Here we assume that ¢ has compact
support and its integer translates are orthogonal.

The basic idea of wavelet bases on [0, 1] is to construct good edge
functions {¢; ,}, near the edges so that

(i) o5, € W5([0,1]), whenever ¢ € WS (R);

0 (i1) P-([0,1}) C Vi, whenever ¢ locally reproduces P;;
(22) (iii) |supp¢j,| is comparable with 27k,

(iv) the number of edge functions ¢} , is minimal

where P, is the collection of all polynomials of total degree less than r
and W, is the Sobolev space in L,,. For a comprehensive study of these
bases, we refer to the papers [1, 4, 5, 6, 20]. Inspired from the conditions
(2.2)(i)—(iii), we shall in Section 3 introduce two general classes. Once
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such a basis for V is determined, L([0, 1]) is decomposed as

Lz([O 1 Vko (@ Wk) Viri = Ve & W, k > k.

k>kg

The complement space W; is also generated by interior wavelets vy ;
and certain edge functions v} , adapted from ) ; near the edges. With
a certain index set A, (depending on the construction of edge functions)
at the level k, a wavelet decomposition of Ly([0, 1]) has the form

(2.3) F=3 (i Bri) Brog + 3 D (FTks) Wi
J€A, k>ko jEAL
where &y ; is ¢ ; or ¢f ,, and ¥y ; is z,bk] or 1/1,“, for j,v € A;z. In the

case of biorthogonal wavelet systems, @, 4 and W, ; will be the duals of
®,.; and ¥ ;, respectively. For our general setting, we shall focus on the
biorthogonal wavelet decomposition of the form (2.3).

To review the Besov spaces, we recall the modulus of smoothness of
order r of f € L,(f2) defined by

(24)  w(fit)y = w(f,t,Q)p = |Shl|1pt 1AL F, M z@erny)s t>0
<

on Q(rh) := {z|[z,z + rh] C Q}. Here

A(fy2) = AN f,z+h) = AU 2),  AL(S,2) = f(2)
is the kth difference of f in the direction h € R9.
DEFINITION 2.1. Let 0 < a < o0, 0 < p,q < o0, and 7 be a positive

integer with a < r. The Besov space By, (02) is defined as the set of all
functions f € L,(Q2) for which

1/q
(25) s = (Z (2%, (, 2-">p]")

v>0

is finite. When g = 0o, the sum above is replaced by sup. A (quasi-)norm
for B2 () is defined by || flsg @) = Il fllL,@ + 1f|Bg,0-

This (quasi-)norm has equivalent integral versions (see [23, 17]). It
is well known that different values of 7 > « result in equivalent (quasi-)
norms. ~

REMARK. There is another version of Besov spaces defined as a col-
lection of distributions (see [23, 17]). We notice from (23] that the spaces



Littlewood-Paley type estimates for Besov spaces 1079

with that version are identical with B, as long as o > d(1/min(1,p) -
1). :
We next review from {13, 17] sequence spaces. For given 0 < a < 00,

0 < ¢ < 00 and a sequence (cx )rez of real numbers, we define a weighted
(quasi-)norm

(2.6) | (ce)

o= (Zlad)

keA
with the usual change to sup when g = co. Here A is a subset of Z. Let
us introduce a useful inequality for the weighted (quasi-)norm.

LEMMA 2.2 (The discrete Hardy inequality). Let (cx) and (di), k €
Z be two given sequences. Also, let 0 < a, u, A < 00 and 0 < ¢ < oo.
For any k € Z, if either

@ ldil < C2™ (e lyynyy WithO <@ <A or

(27 (i) |di| < Cll(cj)“z,,({j>k})' with o > 0,
then '
29 @l < el

where the constant C in (2.8) depends only on p and 1/(A — «) in case
(i) and 1/a in case (ii). Note that u < q as long as a < X in (i) and
a > 0 in (ii).

An associated sequence space with B2 (R?) is the space B:,Q(Rd) of
sequences (ci ;) with two indices k € Z, j € Z%.

~ DEFINITION 2.3. Let @ € R and 0 < p, ¢ < co. Then the space
b2 (R?) consists of all sequences ¢ = (c; ;) such that

(2kd(%/2—1/p) (Z 'Ck,j1p> 1/7’)

JjEZ4

ORI

18(2)
is finite.

Under the condition o > d(1/ min(p, 1) = 1), if f = 3, . cx jmu; with
a family {my ;} of certain smooth molecules (see {17}), then one can have

(2'10) |f|B;;_q(R") < C”(ck»j)ubgq(m)
with C independent of f.
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For fixed a, ¢, and p, let J = d/min(1,p,q) and N = max(|J —d —
a|,—1) where |z] is the largest integer less than or equal to z. We
consider a family {¢;}of functions satisfying the following (see [16]):
for some p and M with J —a— |[J —a] <p<1land M > J,

(2.11)
0 [ Sse)s=0 it hi< o),

() Jors(@)] S 2921+ Ho — gy )M,

(i) |Dpr (z)] < 252D 4 2Kz — 2y )M if |y < N,

(iv) |D@r;i(z) — Dy 5(y)]

< KA —ylp sup (1+ 28|z — 2 — i )M
lzi<lz—y|

if |yl=N.

Here x ; can be any point in the support of ¢ ;. By convention, (2.11)(i)
is void if o < 0; similarly, (2.11)(iii) and (iv) are void if N < 0. The
following is a special case of the inverse estimate of (2.10).

LEMMA 2.4. Suppose a > 0, 0 < p < 00 and a > d(1/ min(1,p) —1).
ff ])‘ Eth’p(Rd) and {¢;} is a family of functions satisfying (2.11)(i)-
iv), then

(212) “((f’ (Pk,j»”i,;;p(Rd) S lelng(Rd)a
where C' is independent of f.
Proof. For a proof, we refer to Section 3 of [16]. O

3. Littlewood-Paley Type Estimates

Inspired from the usual properties of wavelets, we introduce two
classes W,, W, that are characterized by smoothness conditions and van-
ishing moment conditions, respectively. For given k € N, let A; be a
multi-index subset of Z¢ x {1,---,2¢ — 1} such that the number of el-
ements of Ay is comparable to 2¥; that is, #(A;) =~ 2*. We typically
think of Ay including all multi-integers j = (j4, jo) With j; € Z¢ such
that 27%5, + 27%Q C Q, plus some other indices near the boundary of
Q. The second component j, € {1,---2¢ — 1} is the secondary index
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for d-dimensional wavelets. Let us now consider compactly supported
functions, ¢y ; € Loo(Q2), indexed by the set A := {Aj}ren such that

(i) the support of each ¢y ; is contained in a union of at most
(3.1) C, dyadic cubes in © with side length 27F,
(ii) for each z € Q, i ;(x) # 0 for at most C; of j € Ay

where the constants C;, Cy are independent of k, 7, and z. (3.1) will be
a basic condition to establish our Littlewood-Paley type estimates.

For a fixed positive integer s, let ¥, be a class of functions ¢ ;, kK € N,
j € Ay, satisfying (3.1) and

(32) [Yrilwg@ < C29292, 0<a<s,

where o is not necessarily an integer. Also, for a fixed positive integer
r, let W, be a class of functions vy ;, k € N, j € Ay satisfying (3.1) and

() H"ZkJHLw(Q) < C2%P,

(3.3) ~
(ii) / 2y ; de =0, ly] < .
Q

Here the constant C is independent of k and j. The conditions (3.2) and
(3.3) are associated with the smoothness and the vanishing moment con-
ditions of wavelets, respectively. Note that the (biorthogonal) wavelet
systems on  of [1, 4, 6, 20, 22] are special cases of the classes ¥,, P,
with suitable s and 7.

We next introduce a sequence space on 2. For a given sequence
¢ = (ct,;) indexed by the family A = {Ai}ren, we define

(2kd(1/2—1/p) (Z |ckj|”> l/p)

jEAl\:

(3.4) llclleg, ) =

12(k>0)

This is an analog of the quasi-norm || - b (R Indeed, once an index
family A is fixed, the set b3 () of all sequences ¢ = (ci;), k € N, j € Ax

such that (3.4) is finite can be a sequence space with the quasi-norm

fl - llsg @)
The following theorems establish our Littlewood-Paley type estimates
for the Besov spaces B3, (Q2) by the sequence quasi-norm || - |l¢s, (@) With

¥, and ilr. Let us fix the positive integers s and 7.
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THEOREM 3.1. Let 0 < a <5, 1 <p<oo,and0< g<o0. Ifa
function f on € has a representation with respect to W¥,:

(3.5) f= Z Z Ch,j Pk, 5>

k=0 jeAy
then

(3.6) ”f“B;q(Q) < C”(Ck,j)“bgq(n)
with C independent of f, k, and j. Moreover when 0 < p < 1, forp=gq

(3.7) I£]

B2, (%) < Cll(ckvj)Hbg_q(Q)'

REMARK. The space B, with ¢ > (o/d+1)~! has a useful applica-
tion to nonlinear approximation theory that has many applications such
as to data compressions and adaptive algorithms (see {14, 9, 12]).

The following theorem is a dual of Theorem 3.1 with the class @r.

THEOREM 3.2. Let 0 < a <7, 1 < p<o0and 0 < g < oo. If
f € B (Q) and Ckj = <f, '(pk,j> with ’lpk,j S ‘I’T, then

(3.8) “(ck,j)”b;q(n) < C“f”ng(n)

with C independent of f, k, and j. Moreover when 0 < p < 1, forp = ¢
and q > (a/d+1)!

(3.9) I ckf)”bn (@S C“f“Baq(n

In order to establish Theorem 3.1, we need a preliminary estimate for
the difference operator Aj. This estimate gives a Bernstein inequality
for the modulus of smoothness (see [9]).

LEMMA 3.3. Let ;€ W, k€N, j € Ag. Then fork € N, j € Ay,
| AL (r,g, )| < Cmin(1, 2% [A]) 2" 2 x g, 5(2), 0<7<s

with C independent of k and z € ). Here xq:(y,,) I the characteristic
function of Q(v¥x,;) := suppAj (Y, *)-

Proof. First, note the following formula: for any f € W,

(3.10) AL(f, ) / N, (¢ !'D”f(z:+§h)h”d§

|V|—r
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where N, is the B-spline of order of r. This formula can be easily proved
by the induction on r. To employ (3.10), we need to extend Yy ; from
Q to R? by the Whitney type extension (see [15]). The Whitney type
extension operator £ is a bounded operator from W[ (2) to WZ (R?), so
that |Eq; wiwey S C Idjkﬂ'lwg‘,(a) with C independent of ¢, ;. Now since

2 N(§)d{ =1, r €N, for fixed z € Q} (¢ ;)

18505, = | [ M) 3 S0+ Ehne

lv|=r

< Clpelweo I / N, (€)de
<C2kripfrek? o< r<s

where the constant C depends only on r and d. In addition, if |h| > 27%,
by the definition of the difference operator A,

AL @ 2)| < C2H2 0<r<s
where the constant C' depends only on r. This completes the proof. [J

Notice that for each = € Q, Aj(¢;,z) # 0 for at most C of j € A,
with C independent of k£ and j (see (3.1)(ii)). Then for g; = ZjeAk Ck Wk js

(3.11) 18596, 2)P < C D e ;1AL (W, 2) P 0 < p < oo

JEA, v
The following (Bernstein type inequality) estimate follows from Lemma,
3.3, (3.11), and (3.1)(i).

LEMMA 3.4. Let ¢y ; € ¥, k € N, j € A,. Also let 0 < p < oo.
Then for g;, = ZjeAk kW5

(3'12) ws(gk’ 2—u)p < 2’ min (k—V’O)deO/Z-I/p)“(Ck,j)”l (iehy)
P g

where the constant C depends only on s, d, and p.
Applying the sub-additivity of norm, the discrete Hardy inequality,

and Lemma 3.4, we shall prove Theorem 3.1. In approximation theory,
the estimate of Theorem 3.1 is referred as an inverse theorem.

Proof of Theorem 3.1. Let us first consider the case 1 < p < oo.
Using the representation (3.5) of f, the sub-additivity of the norm, and
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(3.12), we can write

—v min (k—v,0)9kd(1/2-1
(313)  w(f,27), < C Y 2sminlbms DR R (e |
k>0

By splitting the right hand side of (3.13) into two parts as d, + e, with

d = Z 2(k-u)szkdu/z-l/p)”(ckJ)HIP(je A

0<k<v
e, = Z 2kd(1/2—1/P)||(Ck,j)”lp(jeAk),
k>v
we obtain
q _ -vy |19
(3.14) |f|B;;’q(Q) = [lws(f,2 )p“z;;(uzo)

< c{||(d)

7;;(./20) + “(ev) 75;(,/20)}'

Notice that for 4 = min(1,q)

ldu| — s Z [2ks (de(m“l/p)n(Ck»i)”z,,(jeAk))]

0<k<v

1/n
"
< 2_”( Z [2ks (2kd(1/2—1/17)H(Ck,j)“lp(jeAk))] ) )

0<k<v

Since 0 < a < s, by Lemma 2.2 with (2.7)(i)

()

s < CH (de(I/Z—l/P) ”(ck,j)Hlp(jeAk))

= C||(cx.s)

19 (k>0)

bg ()"

By similar argument using Lemma 2.2 with (2.7)(ii),

l|(e.)

a0 < Ol oy

Here the constant C at each step is independent of f, k, and j.
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It remains to estimate ||f||z,@), 1 < p < 00. For 1 < g < 00, using
the sub-additivity of || - ||.,(o) and the Holder inequality on g,

11, < 252 s,

k>0 JEA:
. q 1/q
<o(THZ o], ))
1™l Ly(®)
> JEA

< 0| (2409 G yen)

where for the third inequality, (3.1) and (3.2) are used. When 0 < ¢ < 1,
we raise || f||1, to the gth power to obtain the same result; that is,

1F1g, < Z 2aquZ c"»’d)’“’j“qu(n)

k>0 JEAL
< C” (2kd(1/2—1/17)H(Ck,j)”lp(jeAk)>

For the case ¢ = oo, the same argument with the usual change to a
supremum norm establishes the estimate. Finally, the case 0 < p < 1
for the estimate (3.7) can be established by a modification of the proof
above with || - |7 -norm in the place of || - ||z,-norm. O

15(k20)

q

18(k20)

Theorem 3.2 will be established by the vanishing moment conditions
(3.3)(ii) and a Jackson type estimate for the modulus of smoothness
(see [10, 9]). Let us recall from [3, 13] a fundamental result between
smoothness and polynomial approximations of f € L,(I), 0 < p < o0,
where I is a cube in R?.

Let E,.(f,I), := infgep, [|f = Q||z,r) be the local error of approxima-
tion of f by the elements of the collection P,. The Whitney theorem [3]
gives an estimate of E.(f,I), in terms of the modulus of smoothness;
that is,

(315) Er(fa I)p S wa(.ﬂela I)P

where £; is the side length of I and C is a constant depending only on
r and d (and p if p is close to 0). Using this estimate with the averaged
modulus of smoothness (see [13]), we obtain the following lemma from
which the first part of Theorem 3.2 is straightforward.
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LEMMA 3.5. Let 1 <p<ooandr € N. If f € L,(Q) and ¢; =
<f, ¢k,j> with '(/)k,j (S ‘I’T 5 then
(3.16) 2kd(1/2—1/p)“ (ck,;) ”l,,(jeAk)S Cuw,(f,275),
with C independent of k, j, and f.

Proof. Let us first estimate | ;|. Using (3.3)(ii) and the Holder
inequality with 1/p + 1/p/ = 1, we have for all @ € P,

leks| = [(f = @, 9]
< “f - Q“L,,(suppmzk,,-)“’pk,j“Lp,(a)'

Let J; ; be the smallest cube containing all cubes I in § with side length
¢; = 27% such that suppyy; N I # . Notice from (3.1) that

suppzzk,,- CUh; CQ, |k <C27H, for je€ Ay,
with C depending only on d and r. Then, by (3.1), (3.3), and (3.15), for
all k and j € Ay
lex,s| < Cde(l/z_l/p,)Hf - Q“LP(JL.J)
< C2MO/2-1P), () s Tei)o
< OOy, (F.97F ], )

with C independent of f, k, and j. For the last inequality, we have used
the fact that w,(f, Mt), < Cuw,(f,t), for A > 0 with C depending only
onr, A d, and p.

Since each point z € Q appears in at most C cubes J; ; (see (3.1)(i1)),
adding up |c; ;|P over j € Ag provides

(3.17) T Y ey lP < 2R, (£, 97k Q).

JEA
Therefore, (3.16) immediately follows. Indeed, the estimate (3.17) can
be proved via the averaged modulus of smoothness (see [13]). ]

Notice that the proof of Lemma 3.5 can not be applied for 0 < p < 1.
However, we can extend the first part of Theorem 3.2 to 0 < p < 1
taken p = g > (a/d + 1)7! by using the extension operator of [15] and
Lemma 2.4.

Proof of Theorem 3.2. Since the first part of Theorem 3.2 immediately
follows from Lemma 3.5, we shall focus on the case 0 < p < 1. Let
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us first extend ¥y, & {Ivl,, k € N, j € A; to a function \flk,j, k € Z,
j€Z¢x{1,---,2¢ — 1}, defined on R? as follows:

‘I/ ( ) ¢k,]( ) if z € Q and (k,j)eNXAk,
b 0 otherwise.

Since supp{[;k,j c0

(3'18) “((f; ‘de))”bg,,m) = “((fa {I;k’j»”l}gq(Rd) = “((Sf) ‘i;k,j»“bgq(md)‘

Here € is the extension operator of [15] such that for « > d(1/ min(p, 1) -
1),0<pg < oo,

(319) 300 2 1E g, u

To employ Lemma 2.4, note that J = d/min(1,q) = d/q and 1/q <
a/d+1, so that N = max(|J—d—a],~1) = —1. We then need the con-
ditions (2.11)(i) and (ii). Indeed, (2.11)(i) and (ii) are straightforward
from (3.3) and (3.1). Thus, we have

”(<‘€f’ ‘T’k,ﬂ)Hz}gq(Rd) < C““:f Bg (RY)
and complete the proof with (3.19) and (3.18). a

4. Wavelet Coefficients and Besov Spaces

In the standard wavelet theory, it has been known that a wavelet
decomposition for Ly(R?) is valid for L,(R?), 1 < p < oo, with the
convergence in L, if certain conditions (e.g., stability conditions and
decay conditions [18]) on the wavelet ¢ and its dual ¢ hold (see [18,
21]). For instance, Meyer [21] has shown that every orthogonal wavelet
for Ly(R%) is an L,-stable basis for L,(R%). On the interval [0, 1], the
decomposition (2. 3)

f Z f,@ko] Qkoj‘l'zz f7WkJ Wk]

JE€AK, k2ko jeA;,

of Ly([0,1]) still converges in L, for any f € L,,([O, 1), 1 < p < o0, as
long as the wavelet basis and its dual basis satisfy the condition (3.1)
of local supports (see [19]). This argument can be also extended for the
unit cube 2 (or a cube) in R? by the tensor product.
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In this section, we establish that a wavelet basis and its dual basis for
Ly(f2) characterize the smoothness space By () in Ly(2), 1 < p < oo,
if they satisfy the smoothness conditions and vanishing moment condi-
tions, respectively, plus the local supports. This implies that the wavelet
basis forms an unconditional basis for the Besov space.

Let us assume that a wavelet decomposition

(4.1) f= Z (f, ﬁgko,j) Po; + Z Z(fu "Zk,j) P
j€hy, k>ko jEA,

converges in L,(€), 1 < p < co. For our notational convenience, we are
employing the notations for the case of one-dimension instead of those
for Q.

THEOREM 4.1. Assume that 0 < a < 00, l < p < 00, and 0 < ¢ <
o0. Let s and r be the positive integers associated with the classes ¥,

and W,. Also let ¢y;, Y; € W, and Gy, Yr; €W, j € A, k > ko If
f € L,(2) enjoys the decomposition (4.1), then for a < min(r, s)

42) [ fllzg @ ~ 29PN, broDl, engy + 1 B g

Proof. Let us assume 0 < ¢ < 0o. The case ¢ = 00 can be handled
in same way as below. The direction

11350 < C (222 ((F, o) enssy + 1CF Brih) g @)

is straightforward from Theorem 3.1.
By virtue of Theorem 3.2, the other direction of (4.2) is reduced to
estimate

(4.3) 2k°d(l/2-l/p)u((fa ¢k0’j>)”l,,(jeAko) < Cnf“Lp(Q)'
Indeed, (4.3) is straightforward from the Holder inequality and the finite
sum over A, independent of k. a

REMARK. In Theorem 4.1 the ¢4 ; does not need to satisfy (3.3)(ii).
Theorem 4.1 is valid for p = oo if L,(f?) is replaced by C(€2) the space
of continuous functions on 2. In particular, for p = ¢ = oo, the theorem
provides the following characterization for the Holder-Zygmund classes
C*(R2) (see Theorem 3.1 and Theorem 3.2 with p = g = oo):

I Fllcoy = sup 2992 (£, 4 | + sup 254HD|(f qh ).
JEML, k>ko,j€AL
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We next characterize the space By, () with ¢ = (a/d+1/7)}, 1 <
7 < 00. To this end we recall from [13] the embedding property:

(49 B CL@® o [l < Clflam

with C independent of f. Then any f € Bg () enjoys the wavelet
decomposition (4.1) with the convergence in L,.

THEOREM 4.2. Assume that 0 < a < 00, 1 < T < 00, and 0 < g <
0o. Also, let s and r be as in Theorem 4.1. If f € L,(Q) enjoys the
decomposition (4.1), then for & < min(r, s)

(4'5) ”f“B,‘,’,q(Q) ~ 2k0d(1/2“1/q)”(<f1 ako’j»”lq(jEAko) + ll((f) Jk,]‘))“bf{,q(ﬂ)'

Proof. A little modification of the proof of Theorem 4.1 completes
the proof. The estimate (4.3) becomes

odl/2-119)||(, 103!l reny < Cllf g 00

which can be proved by the embedding property (4.4). 0
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