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FINITE DIMENSIONAL SUBSPACES

OF A BESOV SPACE

Hee Chul Pak

Abstract. It is concerned with the size of bounded functions in
Besov spaces. It reports that every closed subspace consisted with
bounded functions in Besov spaces Bs

p,p(Td) (s < 0) is finite dimen-
sional.

1. Main results and notations

An early version of Besov spaces was first studied by Taibleson as a
generalization of Lipschitz spaces. These spaces were named after Besov,
who obtained a trace theorem and embeddings of them [1, 2]. Then the
special (modern) Besov space Bs

2,2 was considered by Hörmander [4],
and the general cases of Besov spaces Bs

p,q were introduced by Peetre in
the connection with modern Littlewood-Paley theory [5].

Littlewood-Paley theory gives a unified perspective to the theory of
function spaces. That is to say, well-known spaces such as Lebesgue,
Hardy, Sobolev, Lipschitz spaces, and the space of BMO are all special
cases of either Besov spaces Bs

p,q or Triebel-Lizorkin spaces F s
p,q .

One of the main merits of Besov spaces Bs
p,q is the effectiveness of

measuring regularity of functions. Based on the Sobolev borderline, the
super critical Besov spaces contain some unbounded functions. We are
interested in the size of unbounded functions (and so the size of bounded
functions) in super critical Besov spaces Bs

p,q. As an our first report
in this direction, we present that every closed subspace consisted of
bounded functions in Besov spaces Bs

p,p(Td) (s < 0) is finite dimensional.
We state our results as follows.

Theorem 1.1. Let 1 ≤ p ≤ ∞ and s < 0. Let V be a subspace of a
Besov space Bs

p,p(Td). Suppose that there is a positive constant K such
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that for every f ∈ V

∥f∥L∞ ≤ K∥f∥Bs
p,p

.(1.1)

Then the dimension of V is finite.

Theorem 1.1 illustrates:

Corollary 1.2. Let 1 ≤ p ≤ ∞ and s < 0. Let V be a subspace
of the space L∞(Td) ∩ Bs

p,p(Td). If V is a closed subspace of Bs
p,p(Td),

then the dimension of V is finite.

Our results are a Besov space version of the theorem of Grothendieck
for the Lebesgue spaces.

We present some notations used in this report. We choose a nonneg-
ative radial function χ ∈ C∞

0 (Rd) satisfying suppχ ⊂ {ξ ∈ Rd : |ξ| ≤ 1},
and χ = 1 for |ξ| ≤ 3

4 . Set

hj(ξ) := χ(2−j−1ξ)− χ(2−jξ), j ≥ 0

and h−1 = χ.
The d-torus Td is the cube [0, 1]d with opposite sides identified. This

means that the points (x1, · · · , 0, · · · , xd) and (x1, · · · , 1, · · · , xd) are
identified whenever 0 and 1 appear in the same coordinate. More pre-
cisely, for x, y ∈ Rd, we say that x ≡ y if x − y ∈ Zd. Here Zd is the
additive subgroup of all points in Rd with integer coordinates. The d-
torus Td is then defined as the set Rd/Zd of all such equivalence classes.

For a tempered distribution f on the torus Td, we consider the
Littlewood-Paley projections

∆jf =
∑
k∈Zd

f̂(k)hj(k)e
2πik·x, j ≥ −1,

where the k-th Fourier coefficient f̂(k) of f is defined by

f̂(k) =

∫
Zd

f(x)e−2πik·xdx.

We define ∆jf = 0 for j ≤ −2 for simplicity. Then we have an analog
of a partition of unity:

f =

∞∑
j=−1

∆jf

in the sense of distributions. We also note that

∆jf = ∆j

∞∑
k=−1

∆kf = ∆j∆j−1f +∆j∆jf +∆j∆j+1f.(1.2)
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For s ∈ R, 1 ≤ p, q ≤ ∞, the (nonhomogeneous) Besov space Bs
p,q(Td)

is the space of all tempered distributions f on the torus Td obeying

∥f∥Bs
p,q

:=
∥∥∥{∥∥2js∆jf

∥∥
Lp

}
j∈Z

∥∥∥
ℓq

< ∞.(1.3)

2. The arguments

We first prove Theorem 1.1. Let {ϕ1, · · · , ϕn} be a linearly indepen-
dent set in V with

∥ϕk∥Bs
p,p

= 1, 1 ≤ k ≤ n.

We are going to demonstrate the fact that the number n is less than
or equal to a constant C which is independent of n. Let Np′(r) be the
finite dimensional p′-ball of radius r :

Np′(r) =

(c1, c2, · · · , cn) :

(
n∑

i=1

|ci|p
′

)1/p′

< r

 if 1 ≤ p′ < ∞

and

N∞(r) =

{
(c1, c2, · · · , cn) : max

1≤i≤d
|ci| < r

}
of Cn or Rn depending on the scalar field of the vector space Bs

p,p(Td).

We choose p′ with 1
p + 1

p′ = 1 and then select the greatest lower bound

r0 > 0 of the positive real numbers satisfying N1(r0) contains Np′(1) in
a finite dimensional Euclidean space Cn or Rn. Let Q be a countable
dense subset of N1(r0). For c = (c1, · · · , cn) ∈ N1(r0), we define

fc :=

n∑
i=1

ciϕi.

Then for any j ≥ −1, we have

2js∥∆jfc∥Lp ≤
n∑

i=1

|ci| · 2js∥∆jϕi∥Lp .

The identity (1.2) implies that for any j ≥ −1,

∥∆jϕi∥pBs
p,p

= 2s(j−1)p∥∆j∆j−1ϕi∥pLp

+ 2sjp∥∆j∆jϕi∥pLp + 2s(j+1)p∥∆j∆j+1ϕi∥pLp

≤ Cp
1 ∥ϕi∥pBs

p,p
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for some absolute positive constant C1. Then since ∥ϕi∥Bs
p,p

= 1 (1 ≤
i ≤ n), we have

∥∆jfc∥Bs
p,p

≤ C1

n∑
i=1

|ci| · ∥ϕi∥Bs
p,p

≤ r0C1(2.1)

and so we obtain that from (1.1)

∥∆jfc∥L∞ ≤ Kr0C1.

Since Q is countable, we can extract a subset T from Td satisfying the
measure of Td − T is zero and

|∆jfc(x)| ≤ Kr0C1(2.2)

for every c ∈ Q and for every x ∈ T . The estimate (2.2), in fact, holds
for all c ∈ Np′(1) ⊂ N1(r0) and x ∈ T due to the fact that for a fixed
x ∈ T , the map

c 7→ ∆jfc(x)

is a continuous function on N1(r0) (hence on Np′(1)). It follows that
n∑

i=1

2sjp|∆jϕi(x)|p = 2sjp
[
sup

{
|∆jfc(x)| : c ∈ Np′(1)

}]p
≤ (2sjKr0C1)

p(2.3)

for every x ∈ T .
Case 1 : 1 ≤ p < ∞. The integration of the inequality (2.3) on Td

gives
n∑

i=1

2sjp∥∆jϕi(x)∥pLp ≤ (2sjKr0C1)
p|Td|(2.4)

where |Td| is the volume of the torus |Td|. This implies that

n =
n∑

i=1

∥ϕi∥pBs
p,p

=
n∑

i=1

∞∑
j=−1

2sjp∥∆jϕi∥pLp

≤ (Kr0C1)
p

2sp(1− 2sp)
|Td| := C.

Case 2 : p = ∞. From the estimate (2.3), we have

n =

n∑
i=1

∥ϕi∥Bs
∞,∞ ≤ sup

−1≤j<∞
(2sjKr0C1)

p|Td| := C.

We conclude that the dimension of V should be less than or equal to
C. This completes the proof of Theorem 1.1. □
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We now provide the proof of Corollary 1.2.

Proof of Corollary 1.2: By virtue of the closed graph theorem, the
identity map from Bs

p,p(Td) to L∞(Td) is continuous. Therefore there is
a constant K > 0 such that

∥f∥L∞ ≤ K∥f∥Bs
p,p

for every f ∈ V . □
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[4] L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, Berlin-
Göttingen-Heidelberg, 1963.

[5] J. Peetre, Sur les espaces de Besov, C. R. Acad. Sci. Paris, 264 (1967), 281-283.
[6] H. Triebel, Theory of function spaces II, Birkhäuser, 1992.
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