JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **36**, No. 2, May 2023 http://dx.doi.org/10.14403/jcms.2023.36.2.87

FINITE DIMENSIONAL SUBSPACES OF A BESOV SPACE

Hee Chul Pak

ABSTRACT. It is concerned with the size of bounded functions in Besov spaces. It reports that every closed subspace consisted with bounded functions in Besov spaces $B_{p,p}^s(\mathbb{T}^d)$ (s < 0) is finite dimensional.

1. Main results and notations

An early version of Besov spaces was first studied by Taibleson as a generalization of Lipschitz spaces. These spaces were named after Besov, who obtained a trace theorem and embeddings of them [1, 2]. Then the special (modern) Besov space $B_{2,2}^s$ was considered by Hörmander [4], and the general cases of Besov spaces $B_{p,q}^s$ were introduced by Peetre in the connection with modern Littlewood-Paley theory [5].

Littlewood-Paley theory gives a unified perspective to the theory of function spaces. That is to say, well-known spaces such as Lebesgue, Hardy, Sobolev, Lipschitz spaces, and the space of BMO are all special cases of either Besov spaces $B_{p,q}^s$ or Triebel-Lizorkin spaces $F_{p,q}^s$.

cases of either Besov spaces $B_{p,q}^s$ or Triebel-Lizorkin spaces $F_{p,q}^s$. One of the main merits of Besov spaces $B_{p,q}^s$ is the effectiveness of measuring regularity of functions. Based on the Sobolev borderline, the super critical Besov spaces contain some unbounded functions. We are interested in the *size* of unbounded functions (and so the size of bounded functions) in super critical Besov spaces $B_{p,q}^s$. As an our first report in this direction, we present that every closed subspace consisted of bounded functions in Besov spaces $B_{p,p}^s(\mathbb{T}^d)$ (s < 0) is finite dimensional. We state our results as follows.

THEOREM 1.1. Let $1 \leq p \leq \infty$ and s < 0. Let V be a subspace of a Besov space $B_{p,p}^s(\mathbb{T}^d)$. Suppose that there is a positive constant K such

Received April 15, 2023; Accepted May 16, 2023.

²⁰²⁰ Mathematics Subject Classification: 42B35, 30H25.

Key words and phrases: Besov space, Littlewood-Paley decomposition, finite dimensional subspace.

that for every $f \in V$

(1.1)
$$||f||_{L^{\infty}} \leq K ||f||_{B^{s}_{p,p}}$$

Then the dimension of V is finite.

Theorem 1.1 illustrates:

COROLLARY 1.2. Let $1 \leq p \leq \infty$ and s < 0. Let V be a subspace of the space $L^{\infty}(\mathbb{T}^d) \cap B^s_{p,p}(\mathbb{T}^d)$. If V is a closed subspace of $B^s_{p,p}(\mathbb{T}^d)$, then the dimension of V is finite.

Our results are a Besov space version of the theorem of Grothendieck for the Lebesgue spaces.

We present some notations used in this report. We choose a nonnegative radial function $\chi \in C_0^{\infty}(\mathbb{R}^d)$ satisfying $\operatorname{supp} \chi \subset \{\xi \in \mathbb{R}^d : |\xi| \leq 1\}$, and $\chi = 1$ for $|\xi| \leq \frac{3}{4}$. Set

$$h_j(\xi) := \chi(2^{-j-1}\xi) - \chi(2^{-j}\xi), \quad j \ge 0$$

and $h_{-1} = \chi$.

The d-torus \mathbb{T}^d is the cube $[0, 1]^d$ with opposite sides identified. This means that the points $(x_1, \dots, 0, \dots, x_d)$ and $(x_1, \dots, 1, \dots, x_d)$ are identified whenever 0 and 1 appear in the same coordinate. More precisely, for $x, y \in \mathbb{R}^d$, we say that $x \equiv y$ if $x - y \in \mathbb{Z}^d$. Here \mathbb{Z}^d is the additive subgroup of all points in \mathbb{R}^d with integer coordinates. The dtorus \mathbb{T}^d is then defined as the set $\mathbb{R}^d/\mathbb{Z}^d$ of all such equivalence classes.

For a tempered distribution f on the torus \mathbb{T}^d , we consider the Littlewood-Paley projections

$$\Delta_j f = \sum_{k \in \mathbb{Z}^d} \hat{f}(k) h_j(k) e^{2\pi i k \cdot x}, \quad j \ge -1,$$

where the k-th Fourier coefficient $\hat{f}(k)$ of f is defined by

$$\hat{f}(k) = \int_{\mathbb{Z}^d} f(x) e^{-2\pi i k \cdot x} dx.$$

We define $\Delta_j f = 0$ for $j \leq -2$ for simplicity. Then we have an analog of a partition of unity:

$$f = \sum_{j=-1}^{\infty} \Delta_j f$$

in the sense of distributions. We also note that

(1.2)
$$\Delta_j f = \Delta_j \sum_{k=-1}^{\infty} \Delta_k f = \Delta_j \Delta_{j-1} f + \Delta_j \Delta_j f + \Delta_j \Delta_{j+1} f.$$

88

For $s \in \mathbb{R}$, $1 \leq p, q \leq \infty$, the (nonhomogeneous) Besov space $B_{p,q}^s(\mathbb{T}^d)$ is the space of all tempered distributions f on the torus \mathbb{T}^d obeying

(1.3)
$$||f||_{B^s_{p,q}} := \left\| \{ \|2^{js} \Delta_j f\|_{L^p} \}_{j \in \mathbb{Z}} \right\|_{\ell^q} < \infty.$$

2. The arguments

We first prove Theorem 1.1. Let $\{\phi_1, \cdots, \phi_n\}$ be a linearly independent set in V with

$$\|\phi_k\|_{B^s_{n,n}} = 1, \quad 1 \le k \le n.$$

We are going to demonstrate the fact that the number n is less than or equal to a constant C which is independent of n. Let $N_{p'}(r)$ be the finite dimensional p'-ball of radius r:

$$N_{p'}(r) = \left\{ (c_1, c_2, \cdots, c_n) : \left(\sum_{i=1}^n |c_i|^{p'} \right)^{1/p'} < r \right\} \quad \text{if} \quad 1 \le p' < \infty$$

and

$$N_{\infty}(r) = \left\{ (c_1, c_2, \cdots, c_n) : \max_{1 \le i \le d} |c_i| < r \right\}$$

of \mathbb{C}^n or \mathbb{R}^n depending on the scalar field of the vector space $B^s_{p,p}(\mathbb{T}^d)$. We choose p' with $\frac{1}{p} + \frac{1}{p'} = 1$ and then select the greatest lower bound $r_0 > 0$ of the positive real numbers satisfying $N_1(r_0)$ contains $N_{p'}(1)$ in a finite dimensional Euclidean space \mathbb{C}^n or \mathbb{R}^n . Let Q be a countable dense subset of $N_1(r_0)$. For $\mathbf{c} = (c_1, \cdots, c_n) \in N_1(r_0)$, we define

$$f_{\mathbf{c}} := \sum_{i=1}^{n} c_i \phi_i.$$

Then for any $j \geq -1$, we have

$$2^{js} \|\Delta_j f_{\mathbf{c}}\|_{L^p} \le \sum_{i=1}^n |c_i| \cdot 2^{js} \|\Delta_j \phi_i\|_{L^p}.$$

The identity (1.2) implies that for any $j \ge -1$,

$$\begin{split} \|\Delta_{j}\phi_{i}\|_{B^{s}_{p,p}}^{p} &= 2^{s(j-1)p} \|\Delta_{j}\Delta_{j-1}\phi_{i}\|_{L^{p}}^{p} \\ &+ 2^{sjp} \|\Delta_{j}\Delta_{j}\phi_{i}\|_{L^{p}}^{p} + 2^{s(j+1)p} \|\Delta_{j}\Delta_{j+1}\phi_{i}\|_{L^{p}}^{p} \\ &\leq C_{1}^{p} \|\phi_{i}\|_{B^{s}_{p,p}}^{p} \end{split}$$

Hee Chul Pak

for some absolute positive constant C_1 . Then since $\|\phi_i\|_{B^s_{p,p}} = 1$ $(1 \le i \le n)$, we have

(2.1)
$$\|\Delta_j f_{\mathbf{c}}\|_{B^s_{p,p}} \le C_1 \sum_{i=1}^n |c_i| \cdot \|\phi_i\|_{B^s_{p,p}} \le r_0 C_1$$

and so we obtain that from (1.1)

$$\|\Delta_j f_{\mathbf{c}}\|_{L^{\infty}} \le K r_0 C_1.$$

Since Q is countable, we can extract a subset T from \mathbb{T}^d satisfying the measure of \mathbb{T}^d-T is zero and

$$(2.2) |\Delta_j f_{\mathbf{c}}(x)| \le K r_0 C_1$$

for every $\mathbf{c} \in Q$ and for every $x \in T$. The estimate (2.2), in fact, holds for all $\mathbf{c} \in N_{p'}(1) \subset N_1(r_0)$ and $x \in T$ due to the fact that for a fixed $x \in T$, the map

$$\mathbf{c} \mapsto \Delta_j f_{\mathbf{c}}(x)$$

is a continuous function on $N_1(r_0)$ (hence on $N_{p'}(1)$). It follows that

(2.3)
$$\sum_{i=1}^{n} 2^{sjp} |\Delta_j \phi_i(x)|^p = 2^{sjp} \left[\sup \left\{ |\Delta_j f_{\mathbf{c}}(x)| : \mathbf{c} \in N_{p'}(1) \right\} \right]^p \leq (2^{sj} K r_0 C_1)^p$$

for every $x \in T$.

Case 1 : $1 \le p < \infty$. The integration of the inequality (2.3) on \mathbb{T}^d gives

(2.4)
$$\sum_{i=1}^{n} 2^{sjp} \|\Delta_j \phi_i(x)\|_{L^p}^p \le (2^{sj} K r_0 C_1)^p |\mathbb{T}^d|$$

where $|\mathbb{T}^d|$ is the volume of the torus $|\mathbb{T}^d|$. This implies that

$$n = \sum_{i=1}^{n} \|\phi_i\|_{B^s_{p,p}}^p = \sum_{i=1}^{n} \sum_{j=-1}^{\infty} 2^{sjp} \|\Delta_j \phi_i\|_{L^p}^p$$
$$\leq \frac{(Kr_0C_1)^p}{2^{sp}(1-2^{sp})} |\mathbb{T}^d| := C.$$

Case 2 : $p = \infty$. From the estimate (2.3), we have

$$n = \sum_{i=1}^{n} \|\phi_i\|_{B^s_{\infty,\infty}} \le \sup_{-1 \le j < \infty} (2^{sj} K r_0 C_1)^p |\mathbb{T}^d| := C.$$

We conclude that the dimension of V should be less than or equal to C. This completes the proof of Theorem 1.1. $\hfill \Box$

90

We now provide the proof of Corollary 1.2.

Proof of Corollary 1.2: By virtue of the closed graph theorem, the identity map from $B_{p,p}^s(\mathbb{T}^d)$ to $L^\infty(\mathbb{T}^d)$ is continuous. Therefore there is a constant K > 0 such that

$$\|f\|_{L^{\infty}} \le K \|f\|_{B^s_{p,p}}$$

for every $f \in V$.

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(2021R1I1A305247113).

References

- O. V. Besov, On a family of function spaces. Embedding theorems and applications (in Russian), Dokl. Akad. Nauk SSSR, 126 (1959), 1163-1165.
- [2] O. V. Besov, On a family of function spaces in connection with embeddings and extensions (in Russian), Trudy Mat. Inst. Steklov, **60** (1961), 42-81.
- [3] H. Han, H. Pak, Resolvent inequality of Laplacian in Besov spaces, J. Chungcheong Math. Soc., 22 (2009), 117-121.
- [4] L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963.
- [5] J. Peetre, Sur les espaces de Besov, C. R. Acad. Sci. Paris, 264 (1967), 281-283.
- [6] H. Triebel, Theory of function spaces II, Birkhäuser, 1992.

Hee Chul Pak Department of Mathematics Dankook University 119 Dandae-ro, Dongnam-gu Cheonan-si, Chungnam, 31116 Republic of Korea *E-mail*: hpak@dankook.ac.kr