References
- H. Al-Qassem and Y. Pan, On certain estimates for Marcinkiewicz integrals and extrapolation, Collect. Math. 60 (2009), no. 2, 123-145. https://doi.org/10.1007/BF03191206
- A. Benedek, A. P. Calderon, and R. Panzone, Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), no. 3, 356-365. https://doi.org/10.1073/pnas.48.3.356
- L. C. Cheng, On Littlewood-Paley functions, Proc. Amer. Math. Soc. 135 (2007), no. 10, 3241-3247. https://doi.org/10.1090/S0002-9939-07-08917-4
- Y. Ding, D. Fan, and Y. Pan, On Littlewood-Paley functions and singular integrals, Hokkaido Math. J. 29 (2000), no. 3, 537-552. https://doi.org/10.14492/hokmj/1350912990
- Y. Ding and S. Sato, Littlewood-Paley functions on homogeneous groups, Forum Math. 28 (2016), no. 1, 43-55.
-
J. Duoandikoetxea, Sharp
$L_p$ boundedness for a class of square functions, Rev. Mat. Complut. 26 (2013), no. 2, 535-548. https://doi.org/10.1007/s13163-012-0106-y - J. Duoandikoetxea and E. Seijo, Weighted inequalities for rough square functions through extrapolation, Studia Math. 149 (2002), no. 3, 239-252. https://doi.org/10.4064/sm149-3-2
- D. Fan and S. Sato, Remarks on Littlewood-Paley functions and singular integrals, J. Math. Soc. Japan 54 (2002), no. 3, 565-585. https://doi.org/10.2969/jmsj/1191593909
- M. Frazier, B. Jawerth, and G. Weiss, Littlewood-Paley theory and the study of function spaces, CBMS Regional Conference Series in Mathematics, 79, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1991.
- S. Korry, A class of bounded operators on Sobolev spaces, Arch. Math. (Basel) 82 (2004), no. 1, 40-50. https://doi.org/10.1007/s00013-003-0416-x
- S. Sato, Remarks on square functions in the Littlewood-Paley theory, Bull. Austral. Math. Soc. 58 (1998), no. 2, 199-211. https://doi.org/10.1017/S0004972700032172
- S. Sato, Estimates for Littlewood-Paley functions and extrapolation, Integral Equations Operator Theory 62 (2008), no. 3, 429-440. https://doi.org/10.1007/s00020-008-1631-4
- E. M. Stein, On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz, Trans. Amer. Math. Soc. 88 (1958), 430-466. https://doi.org/10.1090/S0002-9947-1958-0112932-2
- E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, NJ, 1970.
- E. M. Stein, Harmonic Analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, 43, Princeton University Press, Princeton, NJ, 1993.
- H. Triebel, Theory of Function Spaces, Monographs in Mathematics, 78, Birkhauser Verlag, Basel, 1983.
-
H. Xu, J. Chen, and Y. Ying, A note on Marcinkiewicz integrals with
$H^1$ kernels, Acta Math. Sci. Ser. B Engl. Ed. 23 (2003), no. 1, 133-138. - K. Yabuta, Triebel-Lizorkin space boundedness of Marcinkiewicz integrals associated to surfaces, Appl. Math. J. Chinese Univ. Ser. B 30 (2015), no. 4, 418-446. https://doi.org/10.1007/s11766-015-3358-8
-
K. Yabuta, Remarks on
$L_2$ boundedness of Littlewood-Paley operators, Analysis (Berlin) 33 (2013), no. 3, 209-218. - C. Zhang and J. Chen, Boundedness of g-functions on Triebel-Lizorkin spaces, Taiwanese J. Math. 13 (2009), no. 3, 973-981. https://doi.org/10.11650/twjm/1500405452