• Title/Summary/Keyword: Banach fixed point principle

Search Result 33, Processing Time 0.02 seconds

EXTENSIONS OF BANACH'S AND KANNAN'S RESULTS IN FUZZY METRIC SPACES

  • Choudhur, Binayak S.;Das, Krishnapada;Das, Pradyut
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.265-277
    • /
    • 2012
  • In this paper we establish two common fixed point theorems in fuzzy metric spaces. These theorems are generalisations of the Banach contraction mapping principle and the Kannan's fixed point theorem respectively in fuzzy metric spaces. Our result is also supported by examples.

AN EXTENSION OF THE CONTRACTION MAPPING THEOREM

  • Argyros, Ioannis K.
    • The Pure and Applied Mathematics
    • /
    • v.14 no.4
    • /
    • pp.283-287
    • /
    • 2007
  • An extension of the contraction mapping theorem is provided in a Banach space setting to approximate fixed points of operator equations. Our approach is justified by numerical examples where our results apply whereas the classical contraction mapping principle cannot.

  • PDF

ON THE SOLVABILITY OF A NONLINEAR LANGEVIN EQUATION INVOLVING TWO FRACTIONAL ORDERS IN DIFFERENT INTERVALS

  • Turab, Ali;Sintunavarat, Wutiphol
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.5
    • /
    • pp.1021-1034
    • /
    • 2021
  • This paper deals with a nonlinear Langevin equation involving two fractional orders with three-point boundary conditions. Our aim is to find the existence of solutions for the proposed Langevin equation by using the Banach contraction mapping principle and the Krasnoselskii's fixed point theorem. Three examples are also given to show the significance of our results.

ON THE EXISTENCE OF SOLUTIONS OF EXTENDED GENERALIZED VARIATIONAL INEQUALITIES IN BANACH SPACES

  • He, Xin-Feng;Wang, Xian;He, Zhen
    • East Asian mathematical journal
    • /
    • v.25 no.4
    • /
    • pp.527-532
    • /
    • 2009
  • In this paper, we study the following extended generalized variational inequality problem, introduced by Noor (for short, EGVI) : Given a closed convex subset K in q-uniformly smooth Banach space B, three nonlinear mappings T : $K\;{\rightarrow}\;B^*$, g : $K\;{\rightarrow}\;K$, h : $K\;{\rightarrow}\;K$ and a vector ${\xi}\;{\in}\;B^*$, find $x\;{\in}\;K$, $h(x)\;{\in}\;K$ such that $\xi$, g(y)-h(x)> $\geq$ 0, for all $y\;{\in}\;K$, $g(y)\;{\in}\;K$. [see [2]: M. Aslam Noor, Extended general variational inequalities, Appl. Math. Lett. 22 (2009) 182-186.] By using sunny nonexpansive retraction $Q_K$ and the well-known Banach's fixed point principle, we prove existence results for solutions of (EGVI). Our results extend some recent results from the literature.

Boundary Controllability of Delay Integrodifferential Systems in Banach Spaces

  • Balachandran, K.;Anandhi, E.R.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.4 no.2
    • /
    • pp.67-75
    • /
    • 2000
  • Sufficient conditions for boundary controllability of time varying delay integrodifferential systems in Banach spaces are established. The results are obtained by using the strongly continuous semigroup theory and the Banach contraction principle.

  • PDF

BOUNDARY CONTROLLABILITY OF SEMILINEAR SYSTEMS IN BANACH SPACES

  • BALACHANDRAN, K.;ANANDHI, E.R.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.5 no.2
    • /
    • pp.149-156
    • /
    • 2001
  • Sufficient conditions for boundary controllability of semilinear systems in Banach spaces are established. The results are obtained by using the analytic semigroup theory and the Banach contraction principle. An example is provided to illustrate the theory.

  • PDF

ANALYSIS OF SOLUTIONS FOR THE BOUNDARY VALUE PROBLEMS OF NONLINEAR FRACTIONAL INTEGRODIFFERENTIAL EQUATIONS INVOLVING GRONWALL'S INEQUALITY IN BANACH SPACES

  • KARTHIKEYAN, K.;RAJA, D. SENTHIL;SUNDARARAJAN, P.
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.1_2
    • /
    • pp.305-316
    • /
    • 2022
  • We study the existence and uniqueness of solutions for a class of boundary value problems of nonlinear fractional order differential equations involving the Caputo fractional derivative by employing the Banach's contraction principle and the Schauder's fixed point theorem. In addition, an example is given to demonstrate the application of our main results.