• Title/Summary/Keyword: Accretive operator

Search Result 44, Processing Time 0.022 seconds

ITERATIVE ALGORITHMS FOR A SYSTEM OF RANDOM NONLINEAR EQUATIONS WITH FUZZY MAPPINGS

  • Kim, Jong Kyu;Salahuddin, Salahuddin
    • East Asian mathematical journal
    • /
    • v.34 no.3
    • /
    • pp.265-285
    • /
    • 2018
  • The main purpose of this paper, by using the resolvent operator technique associated with randomly (A, ${\eta}$, m)-accretive operator is to establish an existence and convergence theorem for a class of system of random nonlinear equations with fuzzy mappings in Banach spaces. Our works are improvements and generalizations of the corresponding well-known results.

EXISTENCE OF SOLUTION OF NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS IN GENERAL BANACH SPACES

  • Jeong, Jin-Gyo;Shin, Ki-Yeon
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.4
    • /
    • pp.1003-1013
    • /
    • 1996
  • The existence of a bounded generalized solution on the real line for a nonlinear functional evolution problem of the type $$ (FDE) x'(t) + A(t,x_t)x(t) \ni 0, t \in R $$ in a general Banach spaces is considered. It is shown that (FDE) has a bounded generalized solution on the whole real line with well-known Crandall and Pazy's result and recent results of the functional differential equations involving the operator A(t).

  • PDF

ABSTRACT FUNCTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES

  • Jeong, Jin-Gyo;Shin, Ki-Yeon
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.501-503
    • /
    • 1997
  • The existence of a unique local generalized solution for the abstract functional evolution problem of the type $$ (FDE:\phi) x'(t) + A(t, x_t)x(t) \ni G(t, x_t), t \in [0, T], x_0 = \phi $$ in a general Banach spaces is considered. It is shown that $(FDE:\phi)$ could be considered with well-known fixed point theory and recent results for the functional differential equations involving the operator A(t).

  • PDF

ITERATING A SYSTEM OF SET-VALUED VARIATIONAL INCLUSION PROBLEMS IN SEMI-INNER PRODUCT SPACES

  • Shafi, Sumeera
    • The Pure and Applied Mathematics
    • /
    • v.29 no.4
    • /
    • pp.255-275
    • /
    • 2022
  • In this paper, we introduce a new system of set-valued variational inclusion problems in semi-inner product spaces. We use resolvent operator technique to propose an iterative algorithm for computing the approximate solution of the system of set-valued variational inclusion problems. The results presented in this paper generalize, improve and unify many previously known results in the literature.

SOME PROPERTIES OF SCHRODINGER OPERATORS

  • Kim, Han-Soo;Jang, Lee-Chae
    • Bulletin of the Korean Mathematical Society
    • /
    • v.24 no.1
    • /
    • pp.23-26
    • /
    • 1987
  • The aim of this note is to study some properties of Schrodinger operators, the magnetic case, $H_{0}$ (a)=1/2(-i.del.-a)$^{2}$; H(a)= $H_{0}$ (a)+V, where a=( $a_{1}$,.., $a_{n}$ ).mem. $L^{2}$$_{loc}$ and V is a potential energy. Also, we are interested in solutions, .psi., of H(a).psi.=E.psi. in the sense that (.psi., $e^{-tH}$(a).PSI.)= $e^{-tE}$(.psi.,.PSI.) for all .PSI..mem. $C_{0}$ $^{\infty}$( $R^{n}$ ) (see B. Simon [1]). In section 2, under some conditions, we find that a semibounded quadratic form of H9a) exists and that the Schrodinger operator H(a) with Re V.geq.0 is accretive on a form domain Q( $H_{0}$ (a)). But, it is well-known that the Schrodinger operator H=1/2.DELTA.+V with Re V.geq.0 is accretive on $C_{0}$ $^{\infty}$( $R^{n}$ ) in N Okazawa [4]. In section 3, we want to discuss $L^{p}$ estimates of Schrodinger semigroups.ups.

  • PDF

Nonlinear semigroups on locally convex spaces

  • Hyeon, Son-Kuk
    • East Asian mathematical journal
    • /
    • v.6 no.1
    • /
    • pp.111-121
    • /
    • 1990
  • Let E be a locally convex Hausdorff space and let $\Gamma$ be a calibration for E. In this note we proved that if E is sequentially complete and a multi-vaiued operaturA in E is $\Gamma$-accretive such that $D(A){\subset}Re$ (I+$\lambda$A) for all sufficiently small positive $\lambda$, then A generates a nonlinear $\Gamma$-contraction semiproup {T(t) ; t>0}. We also proved that if E is complete, $Gamma$ is a dually uniformly convex calibration, and an operator A is m-$\Gamma$-accretive, then the initial value problem $$\{{\frac{d}{dt}u(t)+Au(t)\;\ni\;0,\;t >0,\atop u(0)=x}\.$$ has a solution $u:[0,\infty){\rightarrow}E$ given by $u(t)=T(t)x={lim}\limit_{n\rightarrow\infty}(I+\frac{t}{n}A)^{-n}x$ each $x{\varepsilon}D(A)$.

  • PDF

SOME STRONG CONVERGENCE RESULTS OF RANDOM ITERATIVE ALGORITHMS WITH ERRORS IN BANACH SPACES

  • Chugh, Renu;Kumar, Vivek;Narwal, Satish
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.147-161
    • /
    • 2016
  • In this paper, we study the strong convergence and stability of a new two step random iterative scheme with errors for accretive Lipschitzian mapping in real Banach spaces. The new iterative scheme is more acceptable because of much better convergence rate and less restrictions on parameters as compared to random Ishikawa iterative scheme with errors. We support our analytic proofs by providing numerical examples. Applications of random iterative schemes with errors to variational inequality are also given. Our results improve and establish random generalization of results obtained by Chang [4], Zhang [31] and many others.

STRONG CONVERGENCE OF STRICT PSEUDO-CONTRACTIONS IN Q-UNIFORMLY SMOOTH BANACH SPACES

  • Pei, Yonggang;Liu, Fujun;Gao, Qinghui
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.1_2
    • /
    • pp.13-31
    • /
    • 2015
  • In this paper, we introduce a general iterative algorithm for finding a common element of the common fixed point set of an infinite family of ${\lambda}_i$-strict pseudo-contractions and the solution set of a general system of variational inclusions for two inverse strongly accretive operators in q-uniformly smooth Banach spaces. Then, we analyze the strong convergence of the iterative sequence generated by the proposed iterative algorithm under mild conditions.