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ITERATING A SYSTEM OF SET-VALUED VARIATIONAL
INCLUSION PROBLEMS IN SEMI-INNER PRODUCT SPACES

Sumeera Shafi

Abstract. In this paper, we introduce a new system of set-valued variational in-
clusion problems in semi-inner product spaces. We use resolvent operator technique
to propose an iterative algorithm for computing the approximate solution of the
system of set-valued variational inclusion problems. The results presented in this
paper generalize, improve and unify many previously known results in the literature.

1. Introduction

Variational inequalities have been well inquired and theorized to distinct direc-
tions due to its huge collaboration with partial differential equations and optimiza-
tion problems. An intimate conclusion of variational inequality problem is a vari-
ational inclusion problem which is of ruling concern. Numerous researchers used
different tactics to establish iterative algorithms for solving various classes of vari-
ational inequality and variational inclusion problems. The method based on the
resolvent operator technique is a conception of projection method and has been
widely used to solve variational inclusion problems, see for example, [1-4, 7-9, 11,
13, 14, 19].

Inspired by recent research works in this area, in this paper, we consider a system
of set-valued variational inclusion problems (in short, SSVIP) in 2-uniformly smooth
Banach space. Further, using H − η−accretive mapping, we establish an iterative
algorithm for recognizing the approximate solution of the system of variational in-
clusions and check the convergence of sequences generated by iterative algorithm.
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2. Resolvent Operator and Formulation of Problem

Let X be a real 2-uniformly smooth Banach space equipped with norm ‖.‖ and
a semi-inner product [., .]. Let C(X) be the family of all nonempty compact subsets
of X and 2X be the power set of X.

We need the following definitions and results from the literature.

Definition 2.1 ([15]). Let X be a vector space over the field F of real or complex
numbers. A functional [., .] : X ×X → F is called a semi-inner product if it satisfies
the following:

(i) [x + y, z] = [x, z] + [y, z], ∀x, y, z ∈ X,
(ii) [λx, y] = λ[x, y], ∀λ ∈ F and x, y ∈ X,
(iii) [x, x] > 0, for x 6= 0,
(iv) |[x, y]|2 ≤ [x, x][y, y].

The pair (X, [., .]) is called a semi-inner product space.

We observe that ||x|| = [x, x]
1
2 is a norm on X. Hence every semi-inner product

space is a normed linear space. On the other hand, in a normed linear space, one
can generate semi-inner product in infinitely many different ways. Giles [10] had
proved that if the underlying space X is a uniformly convex smooth Banach space
then it is possible to find a semi-inner product, uniquely. Also the unique semi-inner
product has the following nice properties:

(i) [x, y] = 0 if and only if y is orthogonal to x, that is if and only if ||y|| ≤
||y + λx||, ∀ scalars λ.

(ii) Generalized Riesz representation theorem: If f is a continuous linear func-
tional on X then there is a unique vector y ∈ X such that f(x) = [x, y], ∀x ∈
X.

(iii) The semi-inner product is continuous, that is for each x, y ∈ X, we have
Re[y, x + λy] → Re[y, x] as λ → 0.

The sequence space lp, p > 1 and the function space Lp, p > 1 are uniformly
convex smooth Banach spaces. So one can define semi-inner product on these spaces,
uniquely.

Example 2.2 ([20]). The real sequence space lp for 1 < p < ∞ is a semi-inner
product space with the semi-inner product defined by

[x, y] =
1

||y||p−2
p

∑

i

xiyi|yi|p−2, x, y ∈ lp.
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Example 2.3 ([10, 20]). The real Banach space Lp(X, µ) for 1 < p < ∞ is a
semi-inner product space with the semi-inner product defined by

[f, g] =
1

||g||p−2
p

∫

X
f(x)|g(x)|p−1sgn(g(x))dµ, f, g ∈ Lp.

Definition 2.4 ([20, 21]). Let X be a real Banach space. Then:

(i) The modulus of smoothness of X is defined as

ρX(t) = sup
{
||x + y||+ ||x− y||

2
− 1 : ||x|| = 1, ||y|| = t, t > 0

}
.

(ii) X is said to be uniformly smooth if lim
t→0

ρX(t)
t

= 0.

(iii) X is said to be p-uniformly smooth if there exists a positive real constant
c such that ρX(t) ≤ c tp, p > 1. Clearly, X is 2-uniformly smooth if there
exists a positive real constant c such that ρX(t) ≤ c t2.

Lemma 2.5 ([20, 21]). Let p > 1 be a real number and X be a smooth Banach space.
Then the following statements are equivalent:

(i) X is 2-uniformly smooth.
(ii) There is a constant c > 0 such that for every x, y ∈ X, the following in-

equality holds

||x + y||2 ≤ ||x||2 + 2〈y, fx〉+ c||y||2,

where fx ∈ J(x) and J(x) = {x? ∈ X? : 〈x, x?〉 = ||x||2 and ||x?|| = ||x||} is the
normalized duality mapping.

Remark 2.6 ([20]). Every normed linear space is a semi-inner product space (see [15]).
In fact by Hahn Banach theorem, for each x ∈ X, there exists atleast one functional
fx ∈ X? such that 〈x, fx〉 = ||x||2. Given any such mapping f from X into X?, we
can verify that [y, x] = 〈y, fx〉 defines a semi-inner product. Hence we can write (ii)
of above Lemma as

||x + y||2 ≤ ||x||2 + 2[y, x] + c||y||2, ∀x, y ∈ X.

The constant c is chosen with best possible minimum value. We call c, as the
constant of smoothness of X.
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Example 2.7 ([20]). The function space Lp is 2-uniformly smooth for p ≥ 2 and it
is p-uniformly smooth for 1 < p < 2. If 2 ≤ p < ∞, then we have for all x, y ∈ Lp,

||x + y||2 ≤ ||x||2 + 2[y, x] + (p− 1)||y||2.
Here the constant of smoothness is p− 1.

Definition 2.8 ([16, 20]). Let X be a real 2-uniformly smooth Banach space. A
mapping T : X → X is said to be:

(i) monotone, if [Tx− Ty, x− y] ≥ 0, ∀x, y ∈ X,

(ii) strictly monotone, if [Tx− Ty, x− y] ≥ 0, ∀x, y ∈ X, and equality holds if
and only if x = y,

(iii) r-strongly monotone if there exists a positive constant r > 0 such that

[Tx− Ty, x− y] ≥ r||x− y||2, ∀x, y ∈ X,

(iv) δ-Lipschitz continuous, if there exists a constant δ > 0 such that

‖T (x)− T (y)‖ ≤ δ‖x− y‖, ∀x, y ∈ X,

(v) η-monotone, if [Tx− Ty, η(x, y)] ≥ 0, ∀x, y ∈ X,

(vi) strictly η-monotone, if [Tx− Ty, η(x, y)] ≥ 0, ∀x, y ∈ X, and equality holds
if and only if x = y,

(vii) r-strongly η-monotone if there exists a positive constant r > 0 such that

[Tx− Ty, η(x, y)] ≥ r||x− y||2, ∀x, y ∈ X,

(viii) µ-cocoercive if there exists a constant µ > 0 such that

[Tx− Ty, x− y] ≥ µ||Tx− Ty||2, ∀x, y ∈ X.

Definition 2.9. Let X be a 2-uniformly smooth Banach space. Let H : X → X,
η : X ×X → X be single-valued mappings and M : X ×X → 2X be multi-valued
mapping. Then

(i) H is said to be η-accretive, if[
Hx−Hy, η(x, y)

]
≥ 0, ∀x, y ∈ X.

(ii) H is said to be strictly η-accretive, if H is η-accretive and equality holds if
and only if x = y.

(iii) H is said to be r-strongly η-accretive if there exists a constant r > 0 such
that [

Hx−Hy, η(x, y)
]
≥ r‖x− y‖2, ∀x, y ∈ X.
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(iv) η is said to be m-Lipschitz continuous, if there exists a constant m > 0 such
that

‖η(x, y)‖ ≤ m‖x− y‖, ∀x, y ∈ X.

(v) M is said to be η-accretive in the first argument if
[
u− v, η(x, y)

]
≥ 0, ∀x, y ∈ X, ∀u ∈ M(x, t), v ∈ M(y, t), for each fixed t ∈ X.

(vi) M is said to be strictly η-accretive, if M is η-accretive in the first argument
and equality holds if and only if x = y.

(vii) µ-strongly η-accretive if there exists a positive constant µ > 0 such that

[u− v, η(x, y)] ≥ µ‖x− y‖2, ∀x, y ∈ X, u ∈ M(x, t), v ∈ M(y, t).

Definition 2.10. Let S : X ×X ×X → X be a single-valued mapping. Then the
mapping S is called

(i) (ξ, γ)-relaxed cocoercive in the second argument if there exists a constant
ξ, γ > 0 such that

[S(x, y, z)−S(x, y′, z), y−y′] ≥ −ξ‖S(x, y, z)−S(x, y′, z)‖2+γ‖y−y′‖2, ∀x, y, y′, z ∈ X.

(ii) σ-relaxed accretive in the third argument if there exists a constant σ > 0
such that

[S(x, y, z)− S(x, y, z′), z − z′] ≥ −σ‖z − z′‖2, ∀x, y, z, z′ ∈ X.

(iii) δ-strongly monotone in the first argument if there exists a constant δ > 0
such that

[S(x, y, z)− S(x′, y, z), x− x′] ≥ δ‖x− x′‖2, ∀x, x′, y, z ∈ X.

Definition 2.11. Let H : X → X, η : X × X → X be single-valued mappings,
M : X ×X → 2X be a multi-valued mapping, then M is said to be H − η−accretive
mapping if for each fixed t ∈ X, M(., t) is η-accretive in the first argument and
(H + ρM(., t))X = X, ∀ρ > 0.

Theorem 2.12. Let H : X → X, η : X ×X → X be single-valued mappings. Let
H : X → X be s-strongly η-accretive, M : X×X → 2X be H−η−accretive mapping.
If the following inequality :

[
u−v, η(x, y)

]
≥ 0, holds ∀(y, v) ∈ Graph (M(., t)), then

(x, u) ∈ Graph(M(., t)), where Graph (M(., t)) := {(x, u) ∈ X ×X : u ∈ M(x, t)}.
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Proof. Suppose, on the contrary that there exists some (x0, u0) /∈ Graph (M(., t))
such that

(2.1)
[
u0 − v, η(x0, y)

]
≥ 0, ∀(y, v) ∈ Graph (M(., t)).

Since M is H − η−accretive operator,

=⇒ (H + ρM(., t))(X) = X ∀ρ > 0 and for each fixed t ∈ X.

Therefore, there exists (x1, u1) ∈ Graph (M(., t)) such that

(2.2) H(x1) + ρu1 = H(x0) + ρu0 ∈ X.

Combining (2.1) and (2.2), we have

0 ≤ ρ
[
u0 − u1, η(x0, x1)

]

= −
[
H(x0)−H(x1), η(x0, x1)

]

≤ −s‖x0 − x1‖2 ≤ 0.

Since s > 0, therefore x1 = x0, .
Hence, it follows from (2.2) that u1 = u0, a contradiction. This completes the
proof. ¤

Theorem 2.13. Let H : X → X, η : X × X → X be single-valued mappings.
Let H : X → X be s-strongly η-accretive, M : X × X → 2X be H − η−accretive
mappings. Then the mapping (H + ρM(., t))−1 is single-valued, ∀ ρ > 0.

Proof. For any z ∈ X, let x, y ∈ (H + ρM(., t))−1(z). It follows that
1
ρ
(z −H(x)) ∈ M(x, t),

and
1
ρ
(z −H(y)) ∈ M(y, t).

Since M(., t) is η-accretive in the first argument and H is s-strongly η-accretive, we
have

0 ≤
[

1
ρ
(z −H(x))− 1

ρ
(z −H(y)), η(x, y)

]

= −1
ρ

[
H(x)−H(y), η(x, y)

]

≤ −1
ρ
s‖x− y‖2,
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which implies that
1
ρ
s‖x− y‖2 ≤ 0.

Since s > 0, therefore x = y and so (H+ρM(., t))−1 is single-valued. This completes
the proof. ¤

Definition 2.14. Let H : X → X, η : X × X → X be single-valued mappings.
Let H : X → X be s-strongly η-accretive, M : X × X → 2X be H − η−accretive
mappings. Then for each fixed t ∈ X, the resolvent operator R

H,M(.,t)
ρ,η : X → X is

defined by

RH,M(.,t)
ρ,η (x) = (H + ρM(., t))−1(x), ∀x ∈ X.

Now, we prove that the resolvent operator defined above is Lipschitz continuous.

Theorem 2.15. Let η : X × X → X be m-Lipschitz continuous mapping. Let
M : X×X → 2X be H−η−accretive mapping and H be s-strongly η-accretive. Then
for each fixed t ∈ X the resolvent operator of M, R

H,M(.,t)
ρ,η (x) = (H +ρM(., t))−1(x)

is
m

s
− Lipschitz continuous, that is,

∥∥∥RH,M(.,t)
ρ,η (x)−RH,M(.,t)

ρ,η (y)
∥∥∥ ≤ m

s
‖x− y‖, ∀x, y, t ∈ X.

Proof. Let x, y ∈ X. Then from Definition 2.14, it follows that

RH,M(.,t)
ρ,η (x) = (H + ρM(., t))−1(x),

and

RH,M(.,t)
ρ,η (y) = (H + ρM(., t))−1(y),

and so
1
ρ

(
x−H(RH,M(.,t)

ρ,η (x))
)
∈ M

(
RH,M(.,t)

ρ,η (x), t
)

,

and
1
ρ

(
y −H(RH,M(.,t)

ρ,η (y))
)
∈ M

(
RH,M(.,t)

ρ,η (y), t
)

.

For the sake of brevity, let A(x) = R
H,M(.,t)
ρ,η (x), A(y) = R

H,M(.,t)
ρ,η (y).

Since M(., t) is η-accretive operator in the first argument, we have

0 ≤
[

1
ρ
(x−H(A(x)))− 1

ρ
(y −H(A(y))), η

(
A(x), A(y)

)]

or, [
x− y, η

(
A(x), A(y)

)]
≥

[
H(A(x))−H(A(y)), η

(
A(x), A(y)

)]
.
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Since H is s-strongly η-accretive, we have

‖x− y‖
∥∥∥η

(
A(x), A(y)

)∥∥∥

≥
[
x− y, η

(
A(x), A(y)

)]

≥
[
H(A(x))−H(A(y)), η

(
A(x), A(y)

)]

≥ s ‖A(x)−A(y)‖2 ,

therefore,

‖x− y‖ m ‖A(x)−A(y)‖ ≥ s ‖A(x)−A(y)‖2 .

This implies

‖A(x)−A(y)‖ ≤ m

s
‖x− y‖,

or,

‖RH,M(.,t)
ρ,η (x)−RH,M(.,t)

ρ,η (y)‖ ≤ m

s
‖x− y‖.

This completes the proof. ¤

Definition 2.16. The Hausdorff metric D(·, ·) on CB(X), is defined by

D(A, B) = max
{

sup
u∈A

inf
v∈B

d(u, v), sup
v∈B

inf
u∈A

d(u, v)
}

, A, B ∈ CB(X),

where d(·, ·) is the induced metric on X and CB(X) denotes the family of all
nonempty closed and bounded subsets of X.

Definition 2.17 ([6]). A set-valued mapping T : X → CB(X) is said to be γ-D-
Lipschitz continuous, if there exists a constant γ > 0 such that

D(T (x), T (y)) ≤ γ‖x− y‖, ∀x, y ∈ X.

Theorem 2.18 ([17]). Let T : X → CB(X) be a set-valued mapping on X and
(X, d) be a complete metric space. Then:

(i) For any given ξ > 0 and for any given u, v ∈ X and x ∈ T (u), there exists
y ∈ T (v) such that

d(x, y) ≤ (1 + ξ)D(T (u), T (v));

(ii) If T : X → C(X), then (i) holds for ξ = 0, (where C(X) denotes the family
of all nonempty compact subsets of X).
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Definition 2.19 ([18]). Let Y be a semi-inner product space ad let T : X → Y be
an arbitrary operator. Then the generalized adjoint operator T+ of an operator T

is defined as follows: The domain D(T+) of T+ consists of those y ∈ Y for which
there exists z ∈ X such that

[
Tx, y

]
Y

=
[
x, z

]
X

for each x ∈ X and z = T+y.

Remark 2.20. T+ is an operator from D(T+) into X with the nonempty domain
D(T+), since 0 ∈ D(T+). Hence T+(0) = 0. As it is observed in [5] that if X

and Y are Hilbert spaces then the generalized adjoint operator is the usual adjoint
operator. In general, T+ is not linear even for T is a bounded linear operator.

Proposition 2.21. Let X and Y be 2-uniformly convex smooth Banach spaces and
let T : X → Y be a bounded linear operator. Then

(i) D(T+) = Y

(ii) T+ is bounded, and it holds that

‖T+y‖ ≤ ‖T‖ ‖y‖, ∀y ∈ Y.

Now, we formulate our main problem.

For each i = 1, 2, let Si, Ni : Xi ×Xi ×Xi → Xi, Hi : Xi → Xi, ηi : Xi ×Xi → Xi

be single-valued mappings. Let Ai, Bi, Fi : Xi → C(Xi) be set-valued mappings.
Suppose that Mi : Xi×Xi → 2Xi is Hi−ηi−accretive mapping and let G : X1 → X2

be a bounded linear operator such that x2 = Gx1 ∈ X2, y2 = Gy1 ∈ X2. Then we
consider the following system of set-valued variational inclusion problems (in short,
SSVIP): Find (xi, yi) ∈ Xi×Xi, ui ∈ Ai(yi), vi ∈ Bi(yi), wi ∈ Fi(yi), u′i ∈ Ai(xi), v′i ∈
Bi(xi), w′i ∈ Fi(xi) such that
(2.3)

0 ∈ H1(x1)−H1(y1) + ρ1{S1(u1, v1, w1) + M1(x1, y1)}

0 ∈ H2(x2)−H2(y2) + ρ2{S2(u2, v2, w2) + M2(x2, y2)}

0 ∈ H1(y1)−H1(x1) + ρ1{N1(u′1, v
′
1, w

′
1) + M1(y1, x1)}

0 ∈ H2(y2)−H2(x2) + ρ2{N2(u′2, v
′
2, w

′
2) + M2(y2, x2)}, ∀ρ1, ρ2 > 0.





Special Cases:
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I. If in problem (2.3) Xi ≡ X (a real Hilbert space), Mi = M : X × X → 2X be
a maximal η-monotone mapping, Si = S,Ni = N such that S, N : X → X then
problem (2.3) reduces to the following problem: Find (x, y) ∈ X ×X, u ∈ A(y), u′ ∈
A(x) such that

(2.4)
0 ∈ H(x)−H(y) + ρ{S(u) + M(x, y)}

0 ∈ H(y)−H(x) + ρ{N(u′) + M(y, x)}, ∀ρ > 0.





This type of problem has been considered and studied by Kazmi and Bhat [12].

3. Iterative Algorithm

First, we give the following technical lemma:

Lemma 3.1. Let X1, X2 be 2-uniformly smooth Banach spaces. Let for each
i ∈ {1, 2}, Si, Ni,Hi, ηi be single-valued mappings, G : X1 → X2 be a bounded
linear operator and Mi : Xi × Xi → 2Xi be Hi − ηi− accretive mappings. Then
(xi, yi, ui, vi, wi, u

′
i, v

′
i, w

′
i) where (xi, yi) ∈ Xi × Xi, ui ∈ Ai(yi), vi ∈ Bi(yi), wi ∈

Fi(yi), u′i ∈ Ai(xi), v′i ∈ Bi(xi), w′i ∈ Fi(xi) with x2 = Gx1, y2 = Gy1 is a solution of
(2.3) if and only if (xi, yi, ui, vi, wi, u

′
i, v

′
i, w

′
i) satisfies

(3.1)

x1 = R
H1,M1(.,y1)
ρ1,η1

{
H1(y1)− ρ1S1(u1, v1, w1)

}

x2 = R
H2,M2(.,y2)
ρ2,η2

{
H2(y2)− ρ2S2(u2, v2, w2)

}

y1 = R
H1,M1(.,x1)
ρ1,η1

{
H1(x1)− ρ1N1(u′1, v

′
1, w

′
1)

}

y2 = R
H2,M2(.,x2)
ρ2,η2

{
H2(x2)− ρ2N2(u′2, v

′
2, w

′
2)

}
.





where R
Hi,Mi(.,yi)
ρi,ηi =

(
Hi +ρiMi(., yi)

)−1
, R

Hi,Mi(.,xi)
ρi,ηi =

(
Hi +ρiMi(., xi)

)−1
are the

resolvent operators.

Proof. Let (xi, yi, ui, vi, wi, u
′
i, v

′
i, w

′
i) is a solution of (2.3), then we have

xi = RHi,Mi(.,yi)
ρi,ηi

{
Hi(yi)− ρiSi(ui, vi, wi)

}

⇐⇒ xi =
(
Hi + ρiMi(., yi)

)−1{
Hi(yi)− ρiSi(ui, vi, wi)

}

⇐⇒ Hi(xi) + ρiMi(xi, yi) =
{

Hi(yi)− ρiSi(ui, vi, wi)
}

⇐⇒ 0 ∈ Hi(xi)−Hi(yi) + ρi{Si(ui, vi, wi) + Mi(xi, yi)}
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Proceeding likewise by using (3.1), we have

yi = RHi,Mi(.,xi)
ρi,ηi

{
Hi(xi)− ρiNi(u′i, v

′
i, w

′
i)

}

⇐⇒ 0 ∈ Hi(yi)−Hi(xi) + ρi{Ni(u′i, v
′
i, w

′
i) + Mi(yi, xi)}.

¤
Lemma 3.1 allows us to suggest the following iterative algorithm for finding the

approximate solution of (2.3).

Iterative Algorithm 3.2. For each i = {1, 2} given {x0
i , y

0
i , u

0
i , v

0
i , w

0
i , u

′0
i , v′0i , w′0i }

where x0
i ∈ Xi, y

0
i ∈ Xi, u

0
i ∈ Ai(y0

i ), v
0
i ∈ Bi(y0

i ), w
0
i ∈ Fi(y0

i ), u
′0
i ∈ Ai(x0

i ), v
′0
i ∈

Bi(x0
i ), w

′0
i ∈ Fi(x0

i ) compute the sequences {xn
i , yn

i , un
i , vn

i , wn
i , u′ni , v′ni , w′ni } defined

by the iterative schemes

pn
1 = R

H1,M1(.,yn
1 )

ρ1,η1

{
H1(yn

1 )− ρ1S1(un
1 , vn

1 , wn
1 )

}

pn
2 = R

H2,M2(.,yn
2 )

ρ2,η2

{
H2(yn

2 )− ρ2S2(un
2 , vn

2 , wn
2 )

}

rn
1 = R

H1,M1(.,xn
1 )

ρ1,η1

{
H1(xn

1 )− ρ1N1(u′n1 , v′n1 , w′n1 )
}

rn
2 = R

H2,M2(.,xn
2 )

ρ2,η2

{
H2(xn

2 )− ρ2N2(u′n2 , v′n2 , w′n2 )
}

and
xn+1

1 = (1− βn)xn
1 + βn(pn

1 + µG+(pn
2 −Gpn

1 ))

yn+1
1 = (1− βn)yn

1 + βn(rn
1 + µG+(rn

2 −Grn
1 ))

for all n = 0, 1, 2, · · · and ρ1, ρ2, µ > 0, where G+ is the generalized adjoint operator
of G and xn

2 = Gxn
1 and yn

2 = Gyn
1 for all n.

4. Existence of Solution and Convergence Analysis

Theorem 4.1. For each i ∈ {1, 2}, let Xi be a 2-uniformly smooth Banach space
with k as constant of smoothness. Let Si : Xi ×Xi ×Xi → Xi be δi-strongly mono-
tone in the first argument, σi-relaxed accretive in the third argument and (ξi, γi)-
relaxed cocoercive w.r.t Hi in second argument. Let Ni : Xi × Xi × Xi → Xi be
λi-strongly monotone in the first argument, νi-relaxed accretive in the third argu-
ment and (τi, εi)-relaxed cocoercive w.r.t Hi in second argument. Let Si be LSi1

,

LSi2
and LSi3

-Lipschitz continuous in the first, second and third arguments respec-
tively and Ni be LNi1

, LNi2
and LNi3

-Lipschitz continuous in the first, second and
third arguments respectively. Let Ai, Bi, Fi : Xi → C(Xi) be set-valued mappings
such that Ai is lAi − D-Lipschitz continuous, Bi is lBi − D-Lipschitz continuous
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and Fi is lFi − D-Lipschitz continuous. Let Hi be LHi-Lipschitz continuous. Let
G : X1 → X2 be bounded linear operator such that x2 = Gx1, y2 = Gy1. In addition
if

(4.1)

∥∥∥R
Hi,Mi(.,y

n
i )

ρi,ηi (zi)−R
Hi,Mi(.,yi)
ρi,ηi (zi)

∥∥∥ ≤ ti‖yn
i − yi‖, ∀zi ∈ Xi

∥∥∥R
Hi,Mi(.,x

n
i )

ρi,ηi (z′i)−R
Hi,Mi(.,xi)
ρi,ηi (z′i)

∥∥∥ ≤ t′i‖xn
i − xi‖, ∀z′i ∈ Xi.





(4.2)
0 < Φ1 + µ‖G+‖ ‖G‖(Φ1 + Φ3) < 1

0 < Φ2 + µ‖G+‖ ‖G‖(Φ2 + Φ4) < 1,





where

Φ1 :=

{
m1

s1

{√
1 + kρ2

1L
2
S11

l2A1
− 2ρ1δ1 +

√
1 + kρ2

1L
2
S13

l2F1
− 2ρ1σ1

+
√

L2
H1

+ kρ2
1L

2
S12

l2B1
− 2ρ1(−ξ1L2

S12
l2B1

+ γ1L2
H1

)
}

+ t1

}
.

Φ2 :=

{
m1

s1

{√
1 + kρ2

1L
2
N11

l2A1
− 2ρ1λ1 +

√
1 + kρ2

1L
2
N13

l2F1
− 2ρ1ν1

+
√

L2
H1

+ kρ2
1L

2
N12

l2B1
− 2ρ1(−τ1L2

N12
l2B1

+ ε1L2
H1

)
}

+ t′1

}
.

Φ3 :=

{
m2

s2

{√
1 + kρ2

2L
2
S21

l2A2
− 2ρ2δ2 +

√
1 + kρ2

2L
2
S23

l2F2
− 2ρ2σ2

+
√

L2
H2

+ kρ2
2L

2
S22

l2B2
− 2ρ2(−ξ2L2

S22
l2B2

+ γ2L2
H2

)
}

+ t2

}

Φ4 :=

{
m2

s2

{√
1 + kρ2

2L
2
N21

l2A2
− 2ρ2λ2 +

√
1 + kρ2

2L
2
N23

l2F2
− 2ρ2ν2

+
√

L2
H2

+ kρ2
2L

2
N22

l2B2
− 2ρ2(−τ2L2

N22
l2B2

+ ε2L2
H2

)
}

+ t′2

}
.

Then the sequences {xn
i }, {yn

i }, {un
i }, {vn

i }, {wn
i }, {u′ni }, {v′ni }, {w′ni } generated

by above iterative algorithm converges strongly to (xi, yi, ui, vi, wi, u
′
i, v

′
i, w

′
i) where

(xi, yi, ui, vi, wi, u
′
i, v

′
i, w

′
i) is a solution of problem (2.3).
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Proof. From Lemma 3.1, Iterative Algorithm 3.2, (4.1) and by using Theorem 2.15,
it follows that

∥∥∥pn
1 − x1

∥∥∥ =
∥∥∥R

H1,M1(.,yn
1 )

ρ1,η1

{
H1(yn

1 )− ρ1S1(un
1 , vn

1 , wn
1 )

}

−R
H1,M1(.,yn

1 )
ρ1,η1

{
H1(y1)− ρ1S1(u1, v1, w1)

}∥∥∥

+
∥∥∥R

H1,M1(.,yn
1 )

ρ1,η1

{
H1(y1)− ρ1S1(u1, v1, w1)

}

−RH1,M1(.,y1)
ρ1,η1

{
H1(y1)− ρ1S1(u1, v1, w1)

}∥∥∥

≤ m1

s1

∥∥∥
(
H1(yn

1 )−H1(y1)
)
− ρ1

{
S1(un

1 , vn
1 , wn

1 )− S1(u1, v1, w1)
}∥∥∥

+ t1‖yn
1 − y1‖.(4.3)

Now, from (4.3) we can have
∥∥∥
(
H1(yn

1 )−H1(y1)
)
− ρ1

{
S1(un

1 , vn
1 , wn

1 )− S1(u1, v1, w1)
}∥∥∥

≤
∥∥∥ρ1

{
S1(un

1 , vn
1 , wn

1 )− S1(u1, v
n
1 , wn

1 )
}
− (yn

1 − y1)
∥∥∥

+
∥∥∥ρ1

{
S1(u1, v

n
1 , wn

1 )− S1(u1, v
n
1 , w1)

}
+ (yn

1 − y1)
∥∥∥

+
∥∥∥ρ1

{
S1(u1, v

n
1 , w1)− S1(u1, v1, w1)

}
− (H1(yn

1 )−H1(y1))
∥∥∥.(4.4)

Using Remark 2.6, δ1-strongly monotonicity of S1 in the first argument, LS11
-

Lipschitz continuity of S1 in the first argument and lA1 − D-Lipschitz continuity
of A1, it follows that

∥∥∥ρ1

{
S1(un

1 , vn
1 , wn

1 )− S1(u1, v
n
1 , wn

1 )
}
− (yn

1 − y1)
∥∥∥

2

≤ ‖yn
1 − y1‖2 + kρ2

1

∥∥∥S1(un
1 , vn

1 , wn
1 )− S1(u1, v

n
1 , wn

1 )
∥∥∥

2

− 2ρ1

[
S1(un

1 , vn
1 , wn

1 )− S1(u1, v
n
1 , wn

1 ), yn
1 − y1

]

≤
(
1 + kρ2

1L
2
S11

l2A1
− 2ρ1δ1

)
‖yn

1 − y1‖2.

This implies
∥∥∥ρ1

{
S1(un

1 , vn
1 , wn

1 )− S1(u1, v
n
1 , wn

1 )
}
− (yn

1 − y1)
∥∥∥

≤
√

1 + kρ2
1L

2
S11

l2A1
− 2ρ1δ1 ‖yn

1 − y1‖.(4.5)

Again, using σ1-relaxed accretivity of S1 in third argument, LS13
-Lipschitz continuity

of S1 in the third argument, lF1 −D-Lipschitz continuity of F1 and Remark 2.6, we
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have
∥∥∥ρ1

{
S1(u1, v

n
1 , wn

1 )− S1(u1, v
n
1 , w1)

}
+ (yn

1 − y1)
∥∥∥

2

≤ ‖yn
1 − y1‖2 + kρ2

1

∥∥∥S1(u1, v
n
1 , wn

1 )− S1(u1, v
n
1 , w1)

∥∥∥
2

+ 2ρ1

[
S1(u1, v

n
1 , wn

1 )− S1(u1, v
n
1 , w1), yn

1 − y1

]

≤
(
1 + kρ2

1L
2
S13

l2F1
− 2ρ1σ1

)
‖yn

1 − y1‖2.

This implies
∥∥∥ρ1

{
S1(u1, v

n
1 , wn

1 )− S1(u1, v
n
1 , w1)

}
+ (yn

1 − y1)
∥∥∥

≤
√

1 + kρ2
1L

2
S13

l2F1
− 2ρ1σ1 ‖yn

1 − y1‖.(4.6)

Again by using (ξ1, γ1)-relaxed cocoercivity of S1 w.r.t H1 in second argument, LS12
-

Lipschitz continuity of S1 in the second argument, lB1 − D-Lipschitz continuity of
B1, LH1-Lipschitz continuity of H1 and using Remark 2.6, we have

∥∥∥ρ1

{
S1(u1, v

n
1 , w1)− S1(u1, v1, w1)

}
− (H1(yn

1 )−H1(y1))
∥∥∥

2

≤
∥∥∥H1(yn

1 )−H1(y1)
∥∥∥

2
+ kρ2

1

∥∥∥S1(u1, v
n
1 , w1)− S1(u1, v1, w1)

∥∥∥
2

− 2ρ1

[
S1(u1, v

n
1 , w1)− S1(u1, v1, w1),H1(yn

1 )−H1(y1)
]

≤ L2
H1
‖yn

1 − y1‖2 + kρ2
1L

2
S12

l2B1
‖yn

1 − y1‖2

− 2ρ1

(
− ξ1

∥∥∥S1(u1, v
n
1 , w1)− S1(u1, v1, w1)

∥∥∥
2
+ γ1

∥∥∥H1(yn
1 )−H1(y1)

∥∥∥
2)

≤
(
L2

H1
+ kρ2

1L
2
S12

l2B1
− 2ρ1(−ξ1L

2
S12

l2B1
+ γ1L

2
H1

)
)
‖yn

1 − y1‖2.

This implies
∥∥∥ρ1

{
S1(u1, v

n
1 , w1)− S1(u1, v1, w1)

}
− (H1(yn

1 )−H1(y1))
∥∥∥

≤
√

L2
H1

+ kρ2
1L

2
S12

l2B1
− 2ρ1(−ξ1L2

S12
l2B1

+ γ1L2
H1

) ‖yn
1 − y1‖.(4.7)

Therefore combining (4.3)-(4.7), we have
∥∥∥pn

1 − x1

∥∥∥

≤
{

m1

s1

{√
1 + kρ2

1L
2
S11

l2A1
− 2ρ1δ1 +

√
1 + kρ2

1L
2
S13

l2F1
− 2ρ1σ1
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+
√

L2
H1

+ kρ2
1L

2
S12

l2B1
− 2ρ1(−ξ1L2

S12
l2B1

+ γ1L2
H1

)
}

+ t1

}
‖yn

1 − y1‖

≤ Φ1‖yn
1 − y1‖,(4.8)

where Φ1 is defined by (4.2).
Again from Lemma 3.1, Iterative Algorithm 3.2, (4.1) and by using Theorem 2.15,
it follows that

∥∥∥rn
1 − y1

∥∥∥

=
∥∥∥R

H1,M1(.,xn
1 )

ρ1,η1

{
H1(xn

1 )− ρ1N1(u′n1 , v′n1 , w′n1 )
}

−R
H1,M1(.,xn

1 )
ρ1,η1

{
H1(x1)− ρ1N1(u′1, v

′
1, w

′
1)

}∥∥∥

+
∥∥∥R

H1,M1(.,xn
1 )

ρ1,η1

{
H1(x1)− ρ1N1(u′1, v

′
1, w

′
1)

}

−RH1,M1(.,x1)
ρ1,η1

{
H1(x1)− ρ1N1(u′1, v

′
1, w

′
1)

}∥∥∥

≤ m1

s1

∥∥∥
(
H1(xn

1 )−H1(x1)
)
− ρ1

{
N1(u′n1 , v′n1 , w′n1 )−N1(u′1, v

′
1, w

′
1)

}∥∥∥
+ t′1‖xn

1 − x1‖.(4.9)

Now, we have
∥∥∥
(
H1(xn

1 )−H1(x1)
)
− ρ1

{
N1(u′n1 , v′n1 , w′n1 )−N1(u′1, v

′
1, w

′
1)

}∥∥∥

≤
∥∥∥ρ1

{
N1(u′n1 , v′n1 , w′n1 )−N1(u′1, v

′n
1 , w′n1 )

}
− (xn

1 − x1)
∥∥∥

+
∥∥∥ρ1

{
N1(u′1, v

′n
1 , w′n1 )−N1(u′1, v

′n
1 , w′1)

}
+ (xn

1 − x1)
∥∥∥

+
∥∥∥ρ1

{
N1(u′1, v

′n
1 , w′1)−N1(u′1, v

′
1, w

′
1)

}
− (H1(xn

1 )−H1(x1))
∥∥∥.(4.10)

Using Remark 2.6, λ1-strongly monotonicity of N1 in the first argument, LN11
-

Lipschitz continuity of N1 in the first argument and lA1 −D-Lipschitz continuity of
A1, it follows that

∥∥∥ρ1

{
N1(u′n1 , v′n1 , w′n1 )−N1(u′1, v

′n
1 , w′n1 )

}
− (xn

1 − x1)
∥∥∥

2

≤ ‖xn
1 − x1‖2 + kρ2

1

∥∥∥N1(u′n1 , v′n1 , w′n1 )−N1(u′1, v
′n
1 , w′n1 )

∥∥∥
2

− 2ρ1

[
N1(u′n1 , v′n1 , w′n1 )−N1(u′1, v

′n
1 , w′n1 ), xn

1 − x1

]

≤
(
1 + kρ2

1L
2
N11

l2A1
− 2ρ1λ1

)
‖xn

1 − x1‖2.
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This implies

∥∥∥ρ1

{
N1(u′n1 , v′n1 , w′n1 )−N1(u′1, v

′n
1 , w′n1 )

}
− (xn

1 − x1)
∥∥∥

≤
√

1 + kρ2
1L

2
N11

l2A1
− 2ρ1λ1 ‖xn

1 − x1‖.(4.11)

Again, since N1 is ν1-relaxed accretive in third argument, LN13
-Lipschitz continuity

of N1 in the third argument and lF1−D-Lipschitz continuity of F1 and using Remark
2.6, we have

∥∥∥ρ1

{
N1(u′1, v

′n
1 , w′n1 )−N1(u′1, v

′n
1 , w′1)

}
+ (xn

1 − x1)
∥∥∥

2

≤ ‖xn
1 − x1‖2 + kρ2

1

∥∥∥N1(u′1, v
′n
1 , w′n1 )−N1(u′1, v

′n
1 , w′1)

∥∥∥
2

+ 2ρ1

[
N1(u′1, v

′n
1 , w′n1 )−N1(u′1, v

′n
1 , w′1), x

n
1 − x1

]

≤
(
1 + kρ2

1L
2
N13

l2F1
− 2ρ1ν1

)
‖xn

1 − x1‖2.

This implies

∥∥∥ρ1

{
N1(u′1, v

′n
1 , w′n1 )−N1(u′1, v

′n
1 , w′1)

}
+ (xn

1 − x1)
∥∥∥

≤
√

1 + kρ2
1L

2
N13

l2F1
− 2ρ1ν1 ‖xn

1 − x1‖.(4.12)

Again by using (τ1, ε1)-relaxed cocoercivity of N1 w.r.t H1 in second argument, LN12
-

Lipschitz continuity of N1 in the second argument, lB1 − D-Lipschitz continuity of
B1, LH1-Lipschitz continuity of H1 and using Remark 2.6, we have

∥∥∥ρ1

{
N1(u′1, v

′n
1 , w′1)−N1(u′1, v

′
1, w

′
1)

}
− (H1(xn

1 )−H1(x1))
∥∥∥

2

≤
∥∥∥H1(xn

1 )−H1(x1)
∥∥∥

2
+ kρ2

1

∥∥∥N1(u′1, v
′n
1 , w′1)−N1(u′1, v

′
1, w

′
1)

∥∥∥
2

− 2ρ1

[
N1(u′1, v

′n
1 , w′1)−N1(u′1, v

′
1, w

′
1),H1(xn

1 )−H1(x1)
]

≤
∥∥∥H1(xn

1 )−H1(x1)
∥∥∥

2
+ kρ2

1

∥∥∥N1(u′1, v
′n
1 , w′1)−N1(u′1, v

′
1, w

′
1)

∥∥∥
2

− 2ρ1

(
− τ1

∥∥∥N1(u′1, v
′n
1 , w′1)−N1(u′1, v

′
1, w

′
1)

∥∥∥
2
+ ε1

∥∥∥H1(xn
1 )−H1(x1)

∥∥∥
2)

≤ L2
H1
‖xn

1 − x1‖2 + kρ2
1L

2
N12

l2B1
‖xn

1 − x1‖2 − 2ρ1(−τ1L
2
N12

l2B1
+ ε1L

2
H1

) ‖xn
1 − x1‖2

≤
(
L2

H1
+ kρ2

1L
2
N12

l2B1
− 2ρ1(−τ1L

2
N12

l2B1
+ ε1L

2
H1

)
)
‖xn

1 − x1‖2.
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This implies
∥∥∥ρ1

{
N1(u′1, v

′n
1 , w′1)−N1(u′1, v

′
1, w

′
1)

}
− (H1(xn

1 )−H1(x1))
∥∥∥

≤
√

L2
H1

+ kρ2
1L

2
N12

l2B1
− 2ρ1(−τ1L2

N12
l2B1

+ ε1L2
H1

) ‖xn
1 − x1‖.(4.13)

Therefore combining (4.9)-(4.13), we have
∥∥∥rn

1 − y1

∥∥∥

≤
{

m1

s1

{√
1 + kρ2

1L
2
N11

l2A1
− 2ρ1λ1 +

√
1 + kρ2

1L
2
N13

l2F1
− 2ρ1ν1

+
√

L2
H1

+ kρ2
1L

2
N12

l2B1
− 2ρ1(−τ1L2

N12
l2B1

+ ε1L2
H1

)
}

+ t′1

}
‖xn

1 − x1‖

≤ Φ2‖xn
1 − x1‖.(4.14)

Similarly, following the same procedure as in (4.3)-(4.8) and (4.9)-(4.14), we have
∥∥∥pn

2 − x2

∥∥∥

≤
{

m2

s2

{√
1 + kρ2

2L
2
S21

l2A2
− 2ρ2δ2 +

√
1 + kρ2

2L
2
S23

l2F2
− 2ρ2σ2

+
√

L2
H2

+ kρ2
2L

2
S22

l2B2
− 2ρ2(−ξ2L2

S22
l2B2

+ γ2L2
H2

)
}

+ t2

}
‖yn

2 − y2‖

≤ Φ3‖yn
2 − y2‖,(4.15)

and
∥∥∥rn

2 − y2

∥∥∥

≤
{

m2

s2

{√
1 + kρ2

2L
2
N21

l2A2
− 2ρ2λ2

+
√

1 + kρ2
2L

2
N23

l2F2
− 2ρ2ν2

+
√

L2
H2

+ kρ2
2L

2
N22

l2B2
− 2ρ2(−τ2L2

N22
l2B2

+ ε2L2
H2

)
}

+ t′2

}
‖xn

2 − x2‖

≤ Φ4‖xn
2 − x2‖,(4.16)

where Φ2, Φ3, Φ4 is defined by (4.2).
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Now, from (4.8),(4.15) and using the fact that G+ is bounded, we have

‖xn+1
1 − x1‖

(4.17)

≤ (1− βn)‖xn
1 − x1‖+ βn‖pn

1 − x1 + µG+(pn
2 −Gpn

1 )‖
≤ (1− βn)‖xn

1 − x1‖+ βn‖pn
1 − x1‖+ βnµ‖G+‖ ‖pn

2 −Gpn
1‖

≤ (1− βn)‖xn
1 − x1‖+ βnΦ1‖yn

1 − y1‖+ βnµ‖G+‖
(
‖pn

2 − x2 −Gpn
1 + x2‖

)

≤ (1− βn)‖xn
1 − x1‖+ βnΦ1‖yn

1 − y1‖+ βnµ‖G+‖
(
‖pn

2 − x2‖+ ‖G‖‖pn
1 − x1‖

)

≤ (1− βn)‖xn
1 − x1‖+ βnΦ1‖yn

1 − y1‖+ βnµ‖G+‖
(
Φ3‖yn

2 − y2‖+ ‖G‖Φ1‖yn
1 − y1‖

)

≤ (1− βn)‖xn
1 − x1‖+ βnΦ1‖yn

1 − y1‖+ βnµ‖G+‖‖G‖
(
Φ3‖yn

1 − y1‖+ Φ1‖yn
1 − y1‖

)

≤ (1− βn)‖xn
1 − x1‖+ βn

(
Φ1 + µ‖G+‖‖G‖(Φ1 + Φ3)

)
‖yn

1 − y1‖.

Similarly, using the boundedness of G+, (4.14),(4.16) and following the same process
as in (4.17), we obtain

‖yn+1
1 − yn

1 ‖
≤ (1− βn)‖yn

1 − y1‖+ βn
(
Φ2 + µ‖G+‖‖G‖(Φ2 + Φ4)

)
‖xn

1 − x1‖.(4.18)

Now define a norm ‖.‖? on X1 ×X2 by ‖(x, y)‖? = ‖x‖+ ‖y‖, (x, y) ∈ X1 ×X2.

We can show that (X1 ×X1, ‖.‖?) is a Banach space.
By making use of (4.17) and (4.18), we have the following estimate

‖(xn+1
1 , yn+1

1 )− (x1, y1)‖?

= ‖xn+1
1 − x1‖+ ‖yn+1

1 − y1‖
≤ (1− βn)(‖xn

1 − x1‖+ ‖yn
1 − y1‖)

+ βn
(
Φ1 + µ‖G+‖‖G‖(Φ1 + Φ3)

)
‖yn

1 − y1‖

+ βn
(
Φ2 + µ‖G+‖‖G‖(Φ2 + Φ4)

)
‖xn

1 − x1‖
≤ (1− βn)(‖xn

1 − x1‖+ ‖yn
1 − y1‖)

+ βn max {~1, ~2} {‖xn
1 − x1‖+ ‖yn

1 − y1‖}
= (1− βn(1− Φ)) ‖(xn

1 , yn
1 )− (x1, y1)‖?,(4.19)

where Φ = max {~1, ~2} and

~1 = Φ1 + µ‖G+‖‖G‖(Φ1 + Φ3)
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or,

~1 = Φ1 + b(Φ1 + Φ3)

~2 = Φ2 + µ‖G+‖‖G‖(Φ2 + Φ4)

or,

~2 = Φ2 + b(Φ2 + Φ4)

where b = µ‖G+‖‖G‖. Thus it follows that

‖(xn+1
1 , yn+1

1 )− (x1, y1)‖?

< Πn
r=1(1− βr(1− Φ))‖(x0

1, y
0
1)− (x1, y1)‖?.(4.20)

It follows from (4.2) that Φ ∈ (0, 1). Since
∞∑

n=1
βn = ∞ it follows that

lim
n→∞Πn

r=1(1− βr(1− Φ)) = 0.

Thus, it follows from (4.20) that {(xn+1
1 , yn+1

1 )} converges strongly to (x1, y1) as
n → ∞, that is xn

1 → x1 and yn
1 → y1 as n → ∞. Moreover, it follows from (4.8),

(4.14) that pn
1 → x1 and rn

1 → y1 as n →∞. Therefore, it follows from (4.15), (4.16)
respectiely that pn

2 → x2 = Gx1 and rn
2 → y2 = Gy1 as n →∞. This completes the

proof. ¤

5. Conclusion

System of variational inclusions can be viewed as natural and innovative gener-
alizations of the system of variational inequalities. Two of the most difficult and
important problems related to inclusions are the establishment of generalized inclu-
sions and the development of an iterative algorithm. In this article a new system
of set-valued variational inclusion problems is introduced and studied which is more
general than many existing system of variational inclusions in the literature. An
iterative algorithm is established to approximate the solution of our system, and
convergence criteria is also discussed.

We remark that our results are new and useful for further research and one can
extend these results in higher dimensional spaces. Much more work is needed in
all these areas to develop a sound basis for applications of the system of set-valued
variational inclusion problems in engineering and physical sciences.
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