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STRONG CONVERGENCE OF STRICT

PSEUDO-CONTRACTIONS IN Q-UNIFORMLY SMOOTH

BANACH SPACES†

YONGGANG PEI∗, FUJUN LIU AND QINGHUI GAO

Abstract. In this paper, we introduce a general iterative algorithm for
finding a common element of the common fixed point set of an infinite
family of λi-strict pseudo-contractions and the solution set of a general

system of variational inclusions for two inverse strongly accretive opera-
tors in q-uniformly smooth Banach spaces. Then, we analyze the strong
convergence of the iterative sequence generated by the proposed iterative
algorithm under mild conditions.
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1. Introduction

Throughout this paper, we denote by E and E∗ a real Banach space and the
dual space of E respectively. Let C be a subset of E and T be a mapping on C.
We use F (T ) to denote the set of fixed points of T . Let q > 1 be a real number.
The (generalized) duality mapping Jq : E → 2E

∗
is defined by

Jq(x) =
{
x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥q , ∥x∗∥ = ∥x∥q−1

}
for all x ∈ E, where ⟨·, ·⟩ denotes the generalized duality pairing between E
and E∗. In particular, J = J2 is called the normalized duality mapping and
Jq(x) = ∥x∥q−2

J2(x) for x ̸= 0. If E is a Hilbert space, then J = I where I is the
identity mapping. It is well known that if E is smooth, then Jq is single-valued,
which is denoted by jq. Among nonlinear mappings, nonexpansive mappings
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and strict pseudo-contractions are two kinds of the most important nonlinear
mappings. The study of them has a very long history (see [1-16,19-31] and the
references therein). Recall that a mapping T : C → E is nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥ for all x, y ∈ C.

A mapping T : C → E is λ-strict pseudo-contractive in the terminology of
Browder and Petryshyn (see [2, 3, 4]), if there exists a constant λ > 0 such that

⟨Tx− Ty, jq(x− y)⟩ ≤ ∥x− y∥q − λ ∥(I − T )x− (I − T )y∥q (1.1)

for every x, y ∈ C and for some jq(x − y) ∈ Jq(x − y). It is clear that (1.1) is
equivalent to the following inequality

⟨(I − T )x− (I − T )y, jq(x− y)⟩ ≥ λ ∥(I − T )x− (I − T )y∥q . (1.2)

Remark 1.1. The class of strictly pseudo-contractive mappings has been stud-
ied by several authors (see, e.g., [2, 3, 4, 20, 22]). However, their iterative
methods are far less developed though Browder and Petryshyn [24] initiated
their work in 1967. As a matter of fact, strictly pseudo-contractive mappings
have more powerful applications in solving inverse problems (see, e.g., [32]).
Therefore it is interesting to develop the theory of iterative methods for strictly
pseudo-contractive mappings.

In the early sixties, Stampacchia [33] first introduced variational inequality
theory, which has emerged as a fascinating and interesting branch of mathe-
matical and engineering sciences with a wide range of applications in indus-
try, finance, economics, social, ecology, regional, pure and applied sciences (see
[7, 8, 9, 10, 11, 34] and the references therein). In 1968, Brezis [34] initiated the
study of the existence theory of a class of variational inequalities later known
as variational inclusions, using proximal-point mappings due to Moreau [35].
Variational inclusions include variational, quasi-variational, variational-like in-
equalities as special cases. It can be viewed as innovative and novel extension
of the variational principles and thus, has wide applications in the fields of opti-
mization and control, economics and transportation equilibrium and engineering
sciences. Recently, some new and interesting problems, which are called to be
system of variational inequalitys/inclusions received many attentions. System
of variational inequalitys/inclusions can be viewed as natural and innovative
generalizations of the variational inequalities/inclusions and it can provide new
insight regarding problems being studied and can stimulate new and innovative
ideas for solving problem.

Ceng et al. [26] proposed the following new system of variational inequality
problem in a Hilbert space H: find x∗, y∗ ∈ C such that{

⟨λAy∗ + x∗ − y∗, x− x∗⟩ ≥ 0, ∀x ∈ C,

⟨µBx∗ + y∗ − x∗, x− y∗⟩ ≥ 0, ∀x ∈ C,
(1.3)

where λ, µ > 0 are two constants, A,B : E → E are two nonlinear mappings.
This is called the new system of variational inequalities. If we add up the
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requirement that x∗ = y∗ and A = B, then problem (1.3) reduces to the classical
variational inequality problem: find x∗ ∈ C such that

⟨y − x∗, Ax∗⟩ ≥ 0, ∀y ∈ C. (1.4)

In order to find the solutions of the system of variational inequality problem (1.3),
Ceng et al. [26] studied the following approximation method. Let the mappings
A,B : C → H be inverse-strongly monotone, S : C → C be nonexpansive.
Suppose that x1 = u ∈ C and {xn} is generated by{

yn = PC(xn − µBxn),

xn+1 = αnu+ βnxn + γnSPC(yn − λAyn).
(1.5)

They proved that the iterative sequence defined by the relaxed extragradient
method (1.5) converges strongly to a fixed point of S, which is a solution of the
system of variational inequality (1.3).

On the other hand, in order to find the common element of the solutions set
of a variational inclusion and the set of fixed points of a nonexpansive mapping
T, Zhang et al. [6] introduced the following new iterative scheme in a Hilbert
space H. Starting with an arbitrary point x1 = x ∈ H, define sequence {xn} by{

yn = JM,λ(xn − λAxn),

xn+1 = αnx+ (1− αn)Syn,
(1.6)

where A : H → H is an α-cocoercive mapping, M : H → 2H is a maximal
monotone mapping, S : H → H is a nonexpansive mapping and {αn} is a
sequence in [0, 1]. Under mild conditions, they obtained a strong convergence
theorem.

Motivated by Zhang et al. [6] and Zeng et al. [26], Qin et al. [8] considered
the following new system of variational inclusion problem in a uniformly convex
and 2-uniformly smooth Banach space: find (x∗, y∗) ∈ E × E such that{

θ ∈ x∗ − y∗ + ρ1(Ay
∗ +M1x

∗),

θ ∈ y∗ − x∗ + ρ2(Bx∗ +M2y
∗).

(1.7)

The following problems are special cases of problem (1.7).
(1) If A = B and M1 = M2 = M , then problem (1.7) reduces to the problem:
find (x∗, y∗) ∈ E × E such that{

θ ∈ x∗ − y∗ + ρ1(Ay∗ +Mx∗),

θ ∈ y∗ − x∗ + ρ2(Ax∗ +My∗).

(2) If x∗ = y∗, problem (1.7) reduces to the problem: find x∗ ∈ E such that

0 ∈ Ax∗ +Mx∗.

Qin et al. [8] also introduced the following scheme for finding a common element
of the solution set of the general system (1.7) and the fixed point set of a λ-
strict pseudo-contraction. Starting with an arbitrary point x1 = u ∈ E, define
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sequences {xn} by
zn = JM2,ρ2(xn − ρ2Bxn),

yn = JM1,ρ1(zn − ρ1Azn),

xn+1 = αnu+ βnxn + (1− αn − βn)[µSxn + (1− µ)yn], n ≥ 1.

(1.8)

And they proved a strong convergence theorem under mild conditions.
One question arises naturally: Can we extend Theorem 2.1 of Zhang et al. [6],

Theorem 3.1 of Qin et al. [8], Theorem 3.1 of Zeng et al. [26] from Hilbert spaces
or 2-uniformly smooth Banach spaces to more broad q-uniformly smooth Banach
spaces? We put forth another question: Can we get some more general results
even without the condition of uniform convexity of Banach spaces ? However,
the condition of uniform convexity of Banach spaces is necessary in Theorem 3.1
of Qin et al. [8], Yao et al. [36] and so on.

The purpose of this article is to give the affirmative answers to these ques-
tions mentioned above. Motivated by Zhang et al. [6], Qin et al. [8], Yao et al.
[9], Hao [10], J. C. Yao [11], and Takahashi et al. [12], we consider a relaxed
extragradient-type method for finding common elements of the solution set of
a general system of variational inclusions for inverse-strongly accretive map-
pings and the common fixed point set of an infinite family of λi-strict pseudo-
contractions. Furthermore, we obtain strong convergence theorems under mild
conditions to improve and extend the corresponding results.

2. Preliminaries

The norm of a Banach space E is said to be Gâteaux differentiable if the limit

lim
t→0

∥x+ ty∥ − ∥x∥
t

exists for all x, y on the unit sphere S(E) = {x ∈ E : ∥x∥ = 1}. If, for each
y ∈ S(E), the above limit is uniformly attained for x ∈ S(E), then the norm of
E is said to be uniformly Gâteaux differentiable. The norm of E is said to be
Fréchet differentiable if, for each x ∈ S(E), the above limit is attained uniformly
for y ∈ S(E).

Let ρE : [0, 1) → [0, 1) be the modulus of smoothness of E defined by

ρE(t) = sup

{
1

2
(∥x+ y∥+ ∥x− y∥)− 1 : x ∈ S(E), ∥y∥ ≤ t

}
.

A Banach space E is said to be uniformly smooth if ρE(t)
t → 0 as t → 0. Let

q be a fixed real number with 1 < q ≤ 2. Then a Banach space E is said to be
q-uniformly smooth, if there exists a fixed constant c > 0 such that ρE(t) ≤ ctq.
It is well known that E is uniformly smooth if and only if the norm of E is
uniformly Fréchet differentiable. If E is q-uniformly smooth, then q ≤ 2 and E
is uniformly smooth, and hence the norm of E is uniformly Fréchet differentiable.
In particular, the norm of E is Fréchet differentiable.
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Recall that, a mapping T : C → E is said to be L-Lipschitz if for all x, y ∈ C,
there exists a constant L > 0 such that

∥Tx− Ty∥ ≤ L ∥x− y∥ for all x, y ∈ C.

In particular, if 0 < L < 1, then T is called contractive and if L = 1, then T
reduces to a nonexpansive mapping.

For some η > 0, T : C → E is said to be η-strongly accretive, if for all x, y ∈ C,
there exists η > 0, jq(x− y) ∈ Jq(x− y) such that

⟨Tx− Ty, jq(x− y)⟩ ≥ η ∥x− y∥q .
For some µ > 0, T : C → E is said to be µ-inverse strongly accretive, if for

all x, y ∈ C there exists jq(x− y) ∈ Jq(x− y) such that

⟨Tx− Ty, jq(x− y)⟩ ≥ µ ∥Tx− Ty∥q .
A set-valued mapping T : D(T ) ⊆ E → 2E is said to be accretive if for any

x, y ∈ D(T ), there exists j(x − y) ∈ J(x − y), such that for all u ∈ T (x) and
v ∈ T (y),

⟨u− v, j(x− y)⟩ ≥ 0.

A set-valued mapping T : D(T ) ⊆ E → 2E is said to be m-accretive if T
is accretive and (I + ρT )(D(T )) = E for every (equivalently, for some scalar
ρ > 0), where I is the identity mapping.

Let M : D(M) → 2E be m-accretive. Denote by JM,ρ the resolvent of M for
ρ > 0:

JM,ρ = (I + ρM)−1.

It is known that JM,ρ is a single-valued and nonexpansive mapping from E to

D(M) which will be assumed convex (this is so provided E is uniformly smooth
and uniformly convex).

Let {Tn} be a family of mappings from a subset C of a Banach space E into
itself with

∩∞
n=1 F (Tn) ̸= ∅. We say that {Tn} satisfies the AKTT -condition (see

[17]), if for each bounded subset B of C,
∞∑

n=1

sup
ω∈B

∥Tn+1ω − Tnω∥ < ∞.

The following proposition supports {Tn} satisfying AKTT-condition.

Proposition 2.1. Let C be a nonempty convex subset of a real q-uniformly
smooth Banach space E. Assume that {Si : C → C}∞i=1 is a countable family
of λi -strict pseudo-contractions with {λi} ⊂ (0, 1) and inf{λi : i ≥ 1} > 0 such
that F =

∩∞
i=1 F (Si) ̸= ∅. For each n ∈ N, define Tn : C → C by

Tnx =
n∑

k=1

βk
nSkx, ∀x ∈ C.

Let {βk
n} be a family of nonnegative numbers with k ≤ n such that

(i)
∑n

k=1 β
k
n = 1, for all n ∈ N,
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(ii) limn→∞ βk
n > 0, for every k ∈ N,

(iii)
∑∞

n=1

∑n
k=1

∣∣βk
n+1 − βk

n

∣∣ < ∞.

Then the following results hold:

(1) Each Tn is a λ -strict pseudo-contraction.
(2) F (

∑∞
k=1 β

k
nSkx) = F .

(3) {Tn} satisfies AKTT -condition.
(4) If T : C → C is defined by

Tx =
∞∑
k=1

βkSkx, ∀x ∈ C,

where βk = limn→∞ βk
n for all k ∈ N, then Tx = limn→∞ Tnx and

F (T ) =
∩∞

n=1 F (Tn) =
∩∞

k=1 F (Sk).

Proof. (1) and (2) can be deduced directly from Lemma 2.11 in [20]. And the
argument of (3) and (4) is similar to the section 4 (Applications) in [17] and so
it is omitted. �

In order to prove our main results, we need the following lemmas.

Lemma 2.2 ([16]). Let C be a closed convex subset of a strictly convex Banach
space E. Let T1 and T2 be two nonexpansive mappings from C into itself with
F (T1)

∩
F (T2) ̸= ∅. Define a mapping S by

Sx = λT1x+ (1− λ)T2x, ∀x ∈ C,

where λ is a constant in (0, 1). Then S is nonexpansive and F (S) = F (T1)
∩
F (T2).

Lemma 2.3 ([19]). Let {αn} be a sequence of nonnegative numbers satisfying
the property:

αn+1 ≤ (1− γn)αn + bn + γncn, n ≥ 0,

where {γn}, {bn}, {cn} satisfy the restrictions:

(i)
∑∞

n=1 γn = ∞,
(ii) bn ≥ 0,

∑∞
n=1 bn < ∞,

(iii) lim supn→∞ cn ≤ 0.

Then limn→∞ αn = 0.

Lemma 2.4 ([18]). Let q > 1. Then the following inequality holds:

ab ≤ 1

q
aq +

q − 1

q
b

q
q−1

for arbitrary positive real numbers a, b.

Lemma 2.5 ([19]). Let E be a real q-uniformly smooth Banach space, then there
exists a constant Cq > 0 such that

∥x+ y∥q ≤ ∥x∥q + q⟨y, Jq(x)⟩+ Cq ∥y∥q , ∀x, y ∈ E.
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In particular, if E is a real 2-uniformly smooth Banach space, then there exists
a best smooth constant K > 0 such that

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, J(x)⟩+ 2 ∥Ky∥2 , ∀x, y ∈ E.

Lemma 2.6 ([17, 23]). Suppose that {Tn} satisfy the AKTT -condition such
that

(i) {Tnx} converges strongly to some point in C for each x ∈ C.
(ii) Furthermore, if the mapping T : C → C is defined by Tx = limn→∞ Tnx

for all x ∈ C.

Then limn→∞ supω∈B ∥Tω − Tnω∥ = 0 for each bounded subset B of C.

Lemma 2.7 ([22]). Let C be a nonempty convex subset of a real q-uniformly
smooth Banach space E and T : C → C be a λ-strict pseudo-contraction.
For α ∈ (0, 1), we define Tαx = (1 − α)x + αTx. Then, as α ∈ (0, µ],

µ = min{1, { qλ
Cq

}
1

q−1 }, Tα : C → C is nonexpansive such that F (Tα) = F (T ).

Lemma 2.8 ([23]). Let C be a nonempty, closed and convex subset of a real q-
uniformly smooth Banach space E which admits weakly sequentially continuous
generalized duality mapping jq from E into E∗ ( i.e., if for all {xn} ⊂ E with

xn ⇀ x, implies that jq(xn)
∗
⇀ jq(x)). Let T : C → C be a nonexpansive

mapping. Then, for all {xn} ⊂ C, if xn ⇀ x and xn − Txn → 0, then x = Tx.

Lemma 2.9 ([23]). Let C be a nonempty, closed and convex subset of a real
q-uniformly smooth Banach space E. Let V : C → E be a k-Lipschitzian and

η-strongly accretive operator with constants k, η > 0. Let 0 < µ < ( qη
Cqkq )

1
q−1 and

τ = µ(η − Cqµ
q−1kq

q ). Then for each t ∈ (0,min{1, 1
τ }), the mapping S : C → E

defined by S := (I − tµV ) is a contraction with a constant 1− tτ.

Lemma 2.10 ([23]). Let C be a nonempty, closed and convex subset of a real
q-uniformly smooth Banach space E. Let QC be a sunny nonexpansive retraction
from E onto C, V : C → E be a k-Lipschitzian and η-strongly accretive operator
with constants k, η > 0, f : C → E be a L-Lipschitzian mapping with constant
L ≥ 0 and T : C → C be a nonexpansive mapping such that F (T ) ̸= ∅. Let

0 < µ < ( qη
Cqkq )

1
q−1 and 0 ≤ γL < τ, where τ = µ(η − Cqµ

q−1kq

q ). Then the

sequence {xt} defined by

xt = QC [tγfxt + (I − tµV )Txt] (2.1)

has following properties:

(i) {xt} is bounded for each t ∈ (0,min{1, 1
τ }).

(ii) limt→0 ∥xt − Txt∥ = 0.
(iii) {xt} defines a continuous curve from (0,min{1, 1

τ }) into C.

Lemma 2.11 ([1]). Let C be a closed convex subset of a smooth Banach space

E. Let C̃ be a nonempty subset of C. Let Q : C → C̃ be a retraction and let
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j, jq be the normalized duality mapping and generalized duality mapping on E,
respectively. Then the following are equivalent:

(a) Q is sunny and nonexpansive.

(b) ∥Qx−Qy∥2 ≤ ⟨x− y, j(Qx−Qy)⟩, ∀x, y ∈ C.

(c) ⟨x−Qx, j(y −Qx)⟩ ≤ 0, ∀x ∈ C, y ∈ C̃.

(d) ⟨x−Qx, jq(y −Qx)⟩ ≤ 0, ∀x ∈ C, y ∈ C̃.

Lemma 2.12. Let C be a nonempty, closed and convex subset of a real q-
uniformly smooth Banach space E which admits a weakly sequentially continuous
generalized duality mapping jq from E into E∗. Let QC be a sunny nonexpan-
sive retraction from E onto C, V : C → E be a k-Lipschitzian and η-strongly
accretive operator with constants k, η > 0, f : C → E be a L-Lipschitzian map-
ping with constant L ≥ 0 and T : C → C be a nonexpansive mapping such

that F (T ) ̸= ∅. Suppose that 0 < µ < ( qη
Cqkq )

1
q−1 and 0 ≤ γL < τ, where

τ = µ(η − Cqµ
q−1kq

q ). Let {xt} be defined by (2.1) for each t ∈ (0,min{1, 1
τ }).

Then {xt} converges strongly to x∗ ∈ F (T ), which is the unique solution of the
following variational inequality:

⟨γfx∗ − µV x∗, jq(p− x∗)⟩ ≤ 0, ∀p ∈ F (T ). (2.2)

Proof. We firstly show the uniqueness of a solution of the variational inequality
(2.2). Suppose that both x̃ ∈ F (T ) and x∗ ∈ F (T ) are solutions of (2.2). It
follows that

⟨γfx∗ − µV x∗, jq(x̃− x∗)⟩ ≤ 0, (2.3)

⟨γfx̃− µV x̃, jq(x
∗ − x̃)⟩ ≤ 0. (2.4)

Adding up (2.3) and (2.4), we have

⟨(γf − µV )x̃− (γf − µV )x∗, jq(x
∗ − x̃)⟩ ≤ 0.

Notice that

⟨(γf − µV )x̃− (γf − µV )x∗, jq(x
∗ − x̃)⟩ ≥ (τ − γL) ∥x∗ − x̃∥q > 0.

Therefore x∗ = x̃ and the uniqueness is proved. We use x∗ to denote the unique
solution of (2.2).

Next, we prove that xt → x∗ as t → 0.
Since E is reflexive and {xt} is bounded due to Lemma 2.10 (i), there exists a
subsequence {xtn} of {xt} and some point x̃ ∈ C such that xtn ⇀ x̃. By Lemma
2.10 (ii), we have limt→0 ∥xtn − Txtn∥ = 0. Together with Lemma 2.8, we can
get that x̃ ∈ F (T ). Setting yt = tγfxt+(I− tµV )Txt, where t ∈ (0,min{1, 1

τ }).
Then, we can rewrite (2.1) as xt = QCyt. We claim that ∥xtn − x̃∥ → 0.
Thanks to Lemma 2.11, we have that

⟨yt −QCyt, jq(x̃−QCyt)⟩ ≤ 0. (2.5)

It follows from (2.5) and Lemma 2.9 that

∥xtn − x̃∥q = ⟨QCytn − ytn , jq(xtn − x̃)⟩+ ⟨ytn − x̃, jq(xtn − x̃)⟩
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≤ (1− tnτ) ∥xtn − x̃∥q + tn⟨γfxtn − µV x̃, jq(xtn − x̃)⟩.

Thus,

∥xtn − x̃∥q ≤ 1

τ
⟨γfxtn − µV x̃, jq(xtn − x̃)⟩

≤ 1

τ
[γL ∥xtn − x̃∥q + ⟨γfx̃− µV x̃, jq(xtn − x̃)⟩],

which implies that

∥xtn − x̃∥q ≤ ⟨γfx̃− µV x̃, jq(xtn − x̃)⟩
τ − γL

. (2.6)

Using that the duality map jq is weakly sequentially continuous from E to E∗

and noticing (2.6), we get that

lim
n→∞

∥xtn − x̃∥ = 0. (2.7)

Next, we shall prove that x̃ solves the variational inequality (2.2).
Since xt = QCyt = QCyt − yt + tγfxt + (I − tµV )Txt, we derive that

(µV − γf)xt =
1

t
(QCyt − yt)−

1

t
(I − T )xt + µ(V xt − V Txt).

Note that for ∀z ∈ F (T ),

⟨(I − T )xt − (I − T )z, jq(xt − z)⟩ ≥ ∥xt − z∥q − ∥xt − z∥q = 0. (2.8)

It thus follows from Lemma 2.11 and (2.8) that

⟨(µV − γf)xt, jq(xt − z)⟩

=
1

t
⟨QCyt − yt, jq(xt − z)⟩ − 1

t
⟨(I − T )xt, jq(xt − z)⟩

+ ⟨µ(V xt − V Txt), jq(xt − z)⟩
≤ ∥xt − Txt∥M,

(2.9)

where M = supn≥0{µk ∥xt − z∥q−1} < ∞. Now replacing t in (2.9) with tn and
letting n → ∞, noticing (2.7) and Lemma 2.10 (ii), we obtain ⟨(µV −γf)x̃, jq(x̃−
z)⟩ ≤ 0. That is, x̃ ∈ F (T ) is a solution of (2.2); Hence x̃ = x∗ by uniqueness.
Therefore xtn → x∗ as n → ∞. And consequently, xt → x∗ as t → 0. �

Lemma 2.13 ([20]). Let C be a nonempty closed convex subset of a real q-
uniformly smooth Banach space E. Let A : C → E be a α-inverse-strongly
accretive operator. Then the following inequality holds:

∥(I − λA)x− (I − λA)y∥q ≤ ∥x− y∥q − λ(qα− Cqλ
q−1) ∥Ax−Ay∥q .

In particular, if 0 < λ ≤ ( qαCq
)

1
q−1 , then I − λA is nonexpansive.
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Lemma 2.14. Let C be a nonempty closed convex subset of a real q-uniformly
smooth Banach space E. Let Mi : D(Mi) → 2E be m-accretive with D(Mi) = C
for i=1,2 and ρ1, ρ2 be two arbitrary positive constants. Let A,B : C → E be
α-inverse-strongly accretive and β-inverse-strongly accretive, respectively. Let
G : C → C be a mapping defined by

G(x) = JM1,ρ1 [JM2,ρ2(x− ρ2Bx)− ρ1AJM2,ρ2(x− ρ2Bx)], ∀x ∈ C.

If 0 < ρ1 ≤ ( qαCq
)

1
q−1 and 0 < ρ2 ≤ ( qβCq

)
1

q−1 , then G : C → C is nonexpansive.

Proof. We have by Lemma 2.13 that for all x, y ∈ C,

∥Gx−Gy∥ ≤ ∥(I − ρ1A)JM2,ρ2(x− ρ2Bx)− (I − ρ1A)JM2,ρ2(y − ρ2By)∥
≤ ∥x− y∥ ,

which implies that G : C → C is nonexpansive. This completes the proof. �

Lemma 2.15. Let C be a nonempty closed convex subset of a real q-uniformly
smooth Banach space E. Let Mi : D(Mi) → 2E be m-accretive with D(Mi) = C
for i=1,2 and ρ1, ρ2 be two arbitrary positive constants. Then, (x∗, y∗) ∈ C ×C
is a solution of general system (1.7) if and only if x∗ = Gx∗, where G is defined
by Lemma 2.14.

Proof. Note that{
θ ∈ x∗ − y∗ + ρ1(Ay

∗ +M1x
∗),

θ ∈ y∗ − x∗ + ρ2(Bx∗ +M2y∗),
⇐⇒

{
x∗ = JM1,ρ1(y

∗ − ρ1Ay∗),
y∗ = JM2,ρ2(x

∗ − ρ2Bx∗),

and the above system is equivalent to

G(x∗) = JM1,ρ1 [JM2,ρ2(x
∗ − ρ2Bx∗)− ρ1AJM2,ρ2(x

∗ − ρ2Bx∗)] = x∗.

This completes the proof. �

3. Main results

Theorem 3.1. Let C be a nonempty closed convex subset of a strictly convex
and real q-uniformly smooth Banach space E, which admits a weakly sequentially
continuous generalized duality mapping jq : E → E∗. Let QC be a sunny nonex-
pansive retraction from E onto C. Assume A,B : C → E are α-inverse-strongly
accretive and β-inverse-strongly accretive, respectively. Let Mi : D(Mi) → 2E be

m-accretive with D(Mi) = C for i=1,2. Suppose that V : C → E is k-Lipschitz
and η-strongly accretive with constants k, η > 0, f : C → E is L-Lipschitz
with constant L ≥ 0. Let {Sn : C → C}∞n=0 be an infinite family of λn-strict
pseudo-contractions with {λn} ⊂ (0, 1) and inf{λn : n ≥ 0} = λ > 0, such that

F =
∩∞

n=1 F (Sn)
∩
F (G) ̸= ∅. Let 0 < µ < ( qη

Cqkq )
1

q−1 , 0 < ρ1 < ( qαCq
)

1
q−1 ,

0 < ρ2 < ( qβCq
)

1
q−1 , 0 ≤ γL < τ , 0 < σ ≤ d, where τ = µ(η − Cqµ

q−1kq

q ) and

d = min {1, { qλ
Cq

}
1

q−1 }. Define a mapping Tnx := (1− σ)x+ σSnx for all x ∈ C
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and n ≥ 0. For arbitrarily given x0 ∈ C and δ ∈ (0, 1), let {xn} be the sequence
generated iteratively by

zn = JM2,ρ2(xn − ρ2Bxn),

kn = JM1,ρ1(zn − ρ1Azn),

yn = δTnxn + (1− δ)kn,

xn+1 = QC [αnγfxn + γnxn + ((1− γn)I − αnµV )yn], n ≥ 0.

(3.1)

Assume that {αn} and {γn} are two sequences in (0,1) satisfying the following
conditions:

(i)
∞∑

n=0

αn = ∞, lim
n→∞

αn = 0,
∞∑

n=1

|αn+1 − αn| < ∞;

(ii) lim sup
n→∞

γn < 1,
∞∑

n=1

|γn+1 − γn| < ∞.

Suppose in addition that {Sn}∞n=1 satisfies the AKTT -condition. Let S : C → C
be the mapping defined by Sx = limn→∞ Snx for all x ∈ C and suppose that
F (S) =

∩∞
n=1 F (Sn). Then {xn} converges strongly to x∗ ∈ F , which is the

unique solution of the following variational inequality

⟨γfx∗ − µV x∗, jq(p− x∗)⟩ ≤ 0, ∀p ∈ F. (3.2)

Proof. Step 1. We show that sequences {xn} is bounded. By condition (ii)
there is a positive number b such that lim supn→∞ γn < b < 1. Applying con-
dition (i) and (ii), we may assume, without loss of generality, that {γn} ⊂
(0, b] and {αn} ⊂ (0, (1 − b)min{1, 1

τ }). From Lemma 2.9, we deduce that
∥((1− γn)I − αnµV )x− ((1− γn)I − αnµV )y∥ ≤ ((1 − γn) − αnτ) ∥x− y∥ for
∀ x, y ∈ C. For x∗ ∈ F, it follows from Lemma 2.15 that

x∗ = JM1,ρ1 [JM2,ρ2(x
∗ − ρ2Bx∗)− ρ1AJM2,ρ2(x

∗ − ρ2Bx∗)].

Putting y∗ = JM2,ρ2
(x∗−ρ2Bx∗), then we can get that x∗ = JM1,ρ1

(y∗−ρ1Ay∗).
By Lemma 2.13, we obtain

∥kn − x∗∥ ≤ ∥(I − ρ1A)zn − (I − ρ1A)y
∗∥ ≤ ∥xn − x∗∥ . (3.3)

It follows from (3.3) that

∥yn − x∗∥ ≤ δ ∥Tnxn − x∗∥+ (1− δ) ∥kn − x∗∥
≤ δ ∥[(1− σ)xn + σSnxn]− [(1− σ)x∗ + σSnx

∗]∥
+ (1− δ) ∥xn − x∗∥ .

(3.4)

Combining Lemma 2.7 and the condition of 0 < σ ≤ d = min {1, { qλ
Cq

}
1

q−1 } , we

can deduce that

∥[(1− σ)xn + σSnxn]− [(1− σ)x∗ + σSnx
∗]∥ ≤ ∥xn − x∗∥ . (3.5)

Substituting (3.5) into (3.4) and simplifying, we have that

∥yn − x∗∥ ≤ ∥xn − x∗∥ .
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It follows that

∥xn+1 − x∗∥ = ∥QC [αnγfxn + γnxn + ((1− γn)I − αnµV )yn]− x∗∥
≤ ∥αnγfxn + γnxn + [(1− γn)I − αnµV ]yn − x∗∥
≤ [1− αn(τ − γL)] ∥xn − x∗∥+ αn ∥γfx∗ − µV x∗∥

≤ max{∥x0 − x∗∥ , ∥γfx
∗ − µV x∗∥
τ − γL

}.

Hence, {xn} is bounded. {yn}, {kn} and {zn} are also bounded.

Step 2. We shall claim that ∥xn+1 − xn∥ → 0, as n → ∞. We observe that

∥kn+1 − kn∥ = ∥JM1,ρ1(zn+1 − ρ1Azn+1)− JM1,ρ1(zn − ρ1Azn)∥
≤ ∥(I − ρ2B)xn+1 − (I − ρ2B)xn∥
≤ ∥xn+1 − xn∥ .

(3.6)

This together with Lemma 2.7 implies that

∥yn+1 − yn∥ ≤ δ(∥xn+1 − xn∥+ σ ∥Sn+1xn − Snxn∥) + (1− δ) ∥xn+1 − xn∥
≤ ∥xn+1 − xn∥+ ∥Sn+1xn − Snxn∥ .

(3.7)

At the same time, we observe that

∥xn+2 − xn+1∥ ≤ ∥[αn+1γfxn+1 + γn+1xn+1 + ((1− γn+1)I − αn+1µV )yn+1]

− [αnγfxn + γnxn + ((1− γn)I − αnµV )yn]∥
≤ αn+1γL ∥xn+1 − xn∥+ γn+1 ∥xn+1 − xn∥
+ [(1− γn+1)− αn+1τ ] ∥yn+1 − yn∥+ |αn+1 − αn| γ ∥fxn∥
+ |αn+1 − αn|µ ∥V yn∥+ |γn+1 − γn| ∥yn − xn∥ .

(3.8)

Substituting (3.7) into (3.8), we have that

∥xn+2 − xn+1∥ ≤ [1− αn+1(τ − γL)] ∥xn+1 − xn∥+ ∥Sn+1xn − Snxn∥
+ (|αn+1 − αn|+ |γn+1 − γn|)M ′,

(3.9)

where M ′ = supn≥0{µ ∥V yn∥ + γ ∥fxn∥ , ∥yn − xn∥} < ∞. Thanks to {Sn}∞n=1

satisfying the AKTT -condition, we deduce that

∞∑
n=1

∥Sn+1xn − Snxn∥ ≤
∞∑

n=1

sup
ω∈{xn}

∥Sn+1ω − Snω∥ < ∞ (3.10)

From (i), (ii), (3.9), (3.10) and Lemma 2.3, we deduce that

lim
n→∞

∥xn+1 − xn∥ = 0. (3.11)

Notice that

∥yn − xn∥ ≤ ∥xn+1 − xn∥+ ∥xn+1 − yn∥
≤ ∥xn+1 − xn∥+ αn ∥γfxn − µV yn∥+ γn ∥xn − yn∥ ,
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which implies that

∥yn − xn∥ ≤ 1

1− γn
(∥xn+1 − xn∥+ αn ∥γfxn − µV yn∥). (3.12)

Combining conditions (i), (ii), (3.11) and (3.12), we deduce that

lim
n→∞

∥yn − xn∥ = 0. (3.13)

For any bounded subset B of C, we observe that

sup
ω∈B

∥Tn+1ω − Tnω∥ = sup
ω∈B

∥[(1− σ)ω + σSn+1ω]− [(1− σ)ω + σSnω]∥

≤ sup
ω∈B

∥Sn+1ω − Snω∥ .

Since {Sn} satisfies the AKTT -condition, we have that

∞∑
n=1

sup
ω∈B

∥Tn+1ω − Tnω∥ < ∞.

That is, {Tn} satisfies the AKTT -condition. Define a mapping T : C → C by
Tx = limn→∞ Tnx for all x ∈ C. It follows that

Tx = lim
n→∞

Tnx = lim
n→∞

[(1− σ)x+ σSnx] = (1− σ)x+ σSx, ∀x ∈ C. (3.14)

Noticing that

⟨Sx− Sy, jq(x− y)⟩ = lim
n→∞

⟨Snx− Sny, jq(x− y)⟩

≤ ∥Sx− Sy∥q − λ ∥(I − S)x− (I − S)y∥q ,

we deduce that S : C → C is a λ-strict pseudo-contraction. In view of (3.14),

Lemma 2.6 and the condition of 0 < σ ≤ d, where d = min {1, { qλ
Cq

}
1

q−1 }, we
have that T : C → C is a nonexpansive and F (T ) = F (S). Hence we have
F (T ) =

∩∞
n=0 F (Sn) =

∩∞
n=0 F (Tn).

Let W : C → C be the mapping defined by

Wx = δTx+ (1− δ)JM1,ρ1(I − ρ1A)JM2,ρ2(I − ρ2B)x. (3.15)

In view of Lemma 2.2, we see that W is nonexpansive such that

F (W ) = F (T )
∩

F (JM1,ρ1(I−ρ1A)JM2,ρ2(I−ρ2B)) =
∞∩

n=0

F (Sn)
∩

F (G) = F.

Noting that

∥Wxn − yn∥ = δ ∥Txn − Tnxn∥ ,
we obtain

∥Wxn − xn∥ ≤ ∥Wxn − yn∥+ ∥yn − xn∥ ≤ δ ∥Txn − Tnxn∥+ ∥yn − xn∥ . (3.16)

From Lemma 2.6, we can get that

lim sup
n→∞

∥Txn − Tnxn∥ ≤ lim
n→∞

sup
ω∈{xi:i≥0}

∥Tω − Tnω∥ = 0. (3.17)
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Combing (3.13), (3.16) and (3.17), we deduce that

∥Wxn − xn∥ → 0 as n → ∞. (3.18)

Define xt = QC [tγfxt + (I − tµV )Wxt]. From Lemma 2.11, we deduce that
{xt} converges strongly to x∗ ∈ F (W ) = F, which is the unique solution of the
variational inequality of (3.2).

Step 3. We show that

lim sup
n→∞

⟨γfx∗ − µV x∗, jq(xn − x∗)⟩ ≤ 0,

where x∗ is the solution of the variational inequality of (3.2). To show this, we
take a subsequence {xni} of {xn} such that

lim sup
n→∞

⟨γfx∗ − µV x∗, jq(xn − x∗) = lim
i→∞

⟨γfx∗ − µV x∗, jq(xni
− x∗)⟩.

Without loss of generality, we may further assume that xni ⇀ z for some point
z ∈ C due to reflexivity of the Banach space E and boundness of {xn}. It follows
from (3.18) and Lemma 2.8 that z ∈ F (W ). Since the Banach space E has a
weakly sequentially continuous generalized duality mapping jq : E → E∗, we
obtain that

lim sup
n→∞

⟨γfx∗ − µV x∗, jq(xn − x∗) = lim
i→∞

⟨γfx∗ − µV x∗, jq(xni − x∗)⟩

= ⟨γfx∗ − µV x∗, jq(z − x∗)⟩ ≤ 0.

Step 4. Finally we prove that limn→∞ ∥xn − x∗∥. Setting hn = αnγfxn +

γnxn+[(1−γn)I−αnµV ]yn, ∀n ≥ 0. Then by (3.1) we can write xn+1 = QChn.
It follows from Lemmas 2.3 and Lemmas 2.10 that

∥xn+1 − x∗∥q = ⟨QChn − hn, jq(xn+1 − x∗)⟩+ ⟨hn − x∗, jq(xn+1 − x∗)⟩
≤ ⟨hn − x∗, jq(xn+1 − x∗)⟩

≤ [(1− γn)− αnτ ] ∥yn − x∗∥ ∥xn+1 − x∗∥q−1

+ γn ∥xn − x∗∥ ∥xn+1 − x∗∥q−1
+ αn⟨γfxn − γfx∗, jq(xn+1 − x∗)⟩

+ αn⟨γfx∗ − µV x∗, jq(xn+1 − x∗)⟩

≤ [1− αn(τ − γL)][
1

q
∥xn − x∗∥q + q − 1

q
∥xn+1 − x∗∥q]

+ αn⟨γfx∗ − µV x∗, jq(xn+1 − x∗)⟩,

which implies

∥xn+1 − x∗∥q ≤
1− αn(τ − γL)

1 + (q − 1)(τ − γL)αn
∥xn − x∗∥q

+
qαn

1 + (q − 1)(τ − γL)αn
⟨γfx∗ − µV x∗, jq(xn+1 − x∗)⟩

≤ [1− αn(τ − γL)] ∥xn − x∗∥q

+
qαn

1 + (q − 1)(τ − γL)αn
⟨γfx∗ − µV x∗, jq(xn+1 − x∗)⟩.

(3.19)
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Put γn = αn(τ − γL) and cn =
q⟨γfx∗−µV x∗,jq(xn+1−x∗)⟩
[1+(q−1)(τ−γL)αn](τ−γL) . Applying Lemma 2.2

to (3.19), we obtain that xn → x∗ ∈ F as n → ∞. This completes the proof. �

Remark 3.1. Compared with the known results in the literature, our results
are very different from those in the following aspects:

(i) The results in this paper improve and extend corresponding results in
[7, 8, 9, 10, 11, 12, 13]. Especially, Our results extend their results from
2-uniformly smooth Banach spaces or Hilbert spaces to more general
q-uniformly smooth Banach spaces.

(ii) Our Theorem 3.1 extends one nonexpansive mapping in Theorem 2.1
in [6] or one λ-strict pseudo-contraction in Theorem 3.1 in [8] and an
infinitely family of nonexpansive mappings in Theorem 3.1 in [10] to
an infinite family of λi-strict pseudo-contractions. And our Theorem 3.1
gets a common element of the common fixed point set of an infinite family
of λi-strict pseudo-contractions and the solution set of general system
of variational inclusions for two inverse strongly accretive mappings in
a q-uniformly smooth Banach space.

(iii) We by f(xn) replace the u which is a fixed element in iterative scheme
(1.8), where f is a L-Lipschitzian operator. And we also add a Lips-
chitzian and strong accretive operator V in our scheme (3.1). In partic-
ular, whenever C = E, f = u, V = I, {Tn}∞n=0 = {T}, our scheme (3.1)
reduces to (1.8).

(iv) It is worth noting that, the Banach space E does not have to be uniformly
convex in our Theorem 3.1. However, it is very necessary in Theorem
3.1 of Qin et al. [8] and many other literatures.

Remark 3.2. The variational inequality problem in a q-uniformly smooth Ba-
nach space E: finding x∗ such that

⟨γfx∗ − µV x∗, jq(p− x∗)⟩ ≤ 0, ∀p ∈ M (3.20)

is also very interesting and important. As we can see that:

(i) If M := C, then it follows from Lemma 2.11 that the variational inequal-
ity problem (3.20) is equivalent to a fixed point problem: find x∗ ∈ C
such that it satisfies the following equation:

x∗ = QC [x
∗ − ς(µV − γf)x∗],

where ς > 0 is a constant.
(ii) When E := H which is a real Hilbert space, M := F (T ) and µ = 1,

problem (3.20) reduces to finding x∗ ∈ C such that

⟨γfx∗ − V x∗, p− x∗⟩ ≤ 0, ∀p ∈ F (T ),

which is the optimality condition for the minimization problem:

min
x∈C

1

2
⟨V x, x⟩ − h(x),
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where F (T ) is the fixed point set of a nonexpansive mapping T and h is a
potential function for γf (i.e.,h′(x) = γf(x) for all x ∈ H). Furthermore,
if γ = 1, V = I and f(x) = u for all x ∈ C, then problem (3.20) reduces
to finding x∗ ∈ F (T ) such that

⟨u− x∗, p− x∗⟩ ≤ 0, ∀p ∈ F (T ),

which is equivalent to finding x∗ ∈ F (T ) such that

x∗ = PF (T )u = arg min
x∈F (T )

1

2
∥u− x∥2 .

Corollary 3.2. Let C be a nonempty closed convex subset of a strictly con-
vex and 2-uniformly smooth Banach space which admits a weakly sequentially
continuous normalized duality mapping j : E → E∗. Let QC be a sunny non-
expansive retraction from E onto C. Assume the mappings A,B : C → E
are α-inverse-strongly accretive and β-inverse-strongly accretive, respectively.Let
Mi : D(Mi) → 2E be m-accretive with D(Mi) = C for i=1,2. Suppose V :
C → E is a k-Lipschitzian and η-strongly accretive operator with constants
k, η > 0, f : C → E is a L-Lipschitzian with constant L ≥ 0. Let 0 < µ < η

K2k2 ,

0 < ρ1 < α
K2 , 0 < ρ2 < β

K2 and 0 ≤ γL < τ where τ = µ(η − K2µk2). Let
T : C → C be a nonexpansive with F = F (T )

∩
F (G) ̸= ∅. For arbitrarily given

δ ∈ (0, 1) and x0 ∈ C , let {xn} be the sequence generated iteratively by
zn = JM2,ρ2(xn − ρ2Bxn),

kn = JM1,ρ1
(zn − ρ1Azn),

yn = δTxn + (1− δ)kn,

xn+1 = QC [αnγfxn + γnxn + ((1− γn)I − αnµV )yn], n ≥ 0.

(3.21)

Assume that {αn} and {γn} are two sequences in (0, 1) satisfying the following
conditions:

(i)
∞∑

n=0

αn = ∞, lim
n→∞

αn = 0,
∞∑

n=0

|αn+1 − αn| < ∞;

(ii) lim sup
n→∞

γn < 1,
∞∑

n=0

|γn+1 − γn| < ∞.

Then {xn} defined by (3.21) converges strongly to x∗ ∈ F, which is the unique
solution of the following variational inequality:

⟨γfx∗ − µV x∗, j(p− x∗)⟩ ≤ 0, ∀p ∈ F.

4. Conclusion

In this research, a general iterative algorithm is proposed for finding a common
element of the common fixed point set of an infinite family of λi-strict pesudo-
contractions and the solution set of a general system of variational inclusions for
two inverse strongly accretive operators in q-uniformly smooth Banach spaces.
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Then we analyzed the strong convergence of the iterative sequence generated
by the proposed iterative algorithm under very mild conditions. The methods
in the paper are different from those in the early and recent literature. Our
results can be viewed as the improvement, supplementation, and extension of
the corresponding results in some references.
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