본 연구에서는 받아올림이나 받아내림이 있는 가감 연산에 대한 한 아동의 비형식적 지식에 대해 조사하였다. 관련 내용을 아직 학습하지 않은 한 명의 1학년 학생을 대상으로 세 가지 유형의 문제-받아올림 및 받아내림의 기본이 되는 십몇이 되는 덧셈과 십몇과 몇의 차, 받아올림이 있는 두 자리 수와 한 자리 수의 합 및 두 자리수끼리의 합, 받아내림이 있는 두 자리 수와 한 자리 수의 차 및 두 자리 수끼리의 차-를 각각 4, 6, 4문제 제시하여 세 차례에 걸쳐 풀도록 함으로써 아동의 비형식적 지식을 파악하고, 형식적 지식의 영향으로 인해 변화한 계산 전략을 비교 고찰하였다. 이를 통해 아동의 비형식적 지식에 포함된 개념적 요소와 절차적 요소를 추출하고 학교 수학에서 표준 알고리즘으로 다루어지는 형식적 지식과의 연계를 돕기 위한 교수학적 시사점을 얻고자 하였다.
The purpose of this paper is to try formulating a working definition of connection of informal and formal mathematical knowledge. Many researchers have suggested that informal mathematical knowledge should be connected with school mathematics in the process of learning and teaching it. It is because informal mathematical knowledge might play a important role as a cognitive anchor for understanding school mathematics. To implement the connection of them we need to know what the connection means. In this paper, the connection between informal and formal mathematical knowledge refers to the making of relationship between common attributions involved with the two knowledge. To make it clear, it is discussed that informal knowledge consists of two properties of procedures and conceptions as well as formal mathematical knowledge does. Then, it is possible to make a connection of them. Now it is time to make contribution of our efforts to develop appropriate models to connect informal and formal mathematical knowledge.
자연수의 나눗셈에 관해 초등학생이 가진 비형식적 지식을 조사하고 그 결과를 학교에서 지도하는 형식적 지식과 연계하여 의미 있는 시사점을 찾고자 하였다. 이러한 목적을 달성하기 위해 자연수의 나눗셈과 관련하여 형식적 지식을 배우지 않은 학생이 가진 비형식적 지식은 무엇이고, 문제를 해결하는 과정에서 형식적 지식을 학습한 학생과 형식적 지식을 학습하지 쟈은 학생의 사고 전략의 차이를 분석하였다. 이를 위해 1, 2, 3학년 학생을 대상으로 질적 연구를 하여 다음과 같은 결론을 얻었다. 첫째, 자연수의 나눗셈에 관한 초등학생의 비형식적 지식은 구체물에 의한 전략에서부터 사칙연산에 이르기까지 다양하다. 둘째, 형식적 지식을 학습한 학생은 형식적 지식에 문제 해결방법이 한정되어 있어 다양한 전략을 사용하지 못한다. 셋째, 나눗셈 지도가 전혀 이루어지지 않은 1, 2학년 학생이 스스로 비형식적 지식을 사용하여 문제를 해결할 수 있다는 것은 알고리즘의 습득이 문제 해결의 전제조건이 아니라는 것을 보여 준다. 넷째, 수학적 지식을 가르칠 때. 비형식적 지식과 연계하여 형식적 지식을 가르칠 필요가 있다. 다섯째, 수학과의 연산 영역에서도 알고리즘에 치중한 지도가 아닌, 다양한 전략의 지도가 필요하다.
본 논문은 교육과정에서 초등학교 1학년 학생들에게 제시하고 있는 덧셈의 내용을 살펴보고 질문지와 인터뷰를 통해 덧셈의 학습 이전에 실제로 어린이들이 덧셈에서 사용하며 선호하는 전략을 알아보고 바람직한 수학 교수 학습의 방향에 시사점을 제공하고자 한다. 현행의 교육과정은 학습 초기부터 표준 알고리즘을 중심으로 지도 하도록 되어 있고, 교사들은 이러한 지식을 학생들의 수학적 성향과 무관하게 표준 알고리즘을 학생들에게 암암리에 강요하고 있는 실정이다. 교사는 학생들이 어떤 수 세기와 수 개념 단계에 이르렀는지 파악하고 그들의 수개념과 표준 알고리즘간의 효과적인 결합을 위해서 학생들의 풀이 전략을 좀 더 심층적으로 관찰할 필요가 있으며, 학생들의 비형식적인 지식을 형식적인 수학에 유연하게 접목하는 시도를 끊임없이 해야할 것이다.
인지적으로 안내된 교수(CGI)는 학생들의 수학적 사고(특히, 비형식적 지식)의 발달; 그러한 발달에 영향을 미치는 교수; 교수 실제에 영향을 미치는 교사의 지식과 신념들; 교사의 지식, 신념들, 실제들이 학생들의 수학적 사고에 대한 이해에 의해 영향을 받는다는 점에 초점을 둔 통합된 연구 프로그램이다. 본 논문에서는 아동의 비형식적인 지식을 중시하는 최근의 연구들을 고찰하고, CGI를 위한 수업을 어떻게 조직하며, 그러한 교수법이 수업을 어떻게 진행할 것인지에 대한 구체적이고 명확한 지침을 제공하지 않으므로 CGI를 적용하는 교실들의 유사점을 살펴본다. 그리고, 마지막으로 최근의 연구들을 고찰함으로써 CGI의 효과를 알아본다.
본 연구에서는 분수의 곱셈에서 학생이 학교 수업을 받기 이전에 가지고 있는 비형식적 지식이 무엇인지를 알아보고, 그 지식을 형식화 할 수 있는 교수$\cdot$학습 방법을 추출하기 위해서 문헌 검토를 통해 6차시의 사전 교수$\cdot$학습안을 개발하고, 이를 바탕으로 초등학교 4학년 학생 7명에게 교수실험을 실시하였다. 교수실험 결과, 학생의 분수 곱셈에서의 비형식적 지식은 그림을 이용한 직접적 모델링 전략, 비형식적 언어에 의한 사고, 조작 가능한 수식에 의한 표상으로 나타났다. 또한, 교수실험과정에서 학생이 보인 반응을 분석하여 (분수)$\times$(자연수), (자연수)$\times$(분수), (단위분수)$\times$(단위분수), (진분수)$\times$(진분수)의 곱셈에서 비형식적 지식을 형식화하기 위한 교수$\cdot$학습 방법을 제시하였고, 이에 터하여 분수의 곱셈에서 학생의 비형식적 지식을 형식적 지식으로 연결하기 위한 교수$\cdot$학습 활동자료를 제시하였다. 본 연구에서 개발한 교수$\cdot$학습 활동자료는 학생이 가진 비형식적 지식에 기초하여 형식적 지식을 의미 있게 학습할 수 있도록 할뿐만 아니라 더 나아가 수학적 사고력과 긍정적인 수학 성향을 길러줄 수 있을 것으로 기대한다.
본 연구는 교사지식 중에서 예비교사의 학생에 대한 지식을 Shulman-Fischbein 개념틀을 이용하여 해석함으로써 우리의 교사교육의 현실에 시사점을 제공하고자 하였다. Shulman-Fischbein 개념틀은 수학의 알고리즘적 SMK, 수학의 형식적 SMK, 수학의 직관적 SMK, 수학의 알고리즘적 PCK, 수학의 형식적 PCK, 그리고 수학의 직관적 PCK의 여섯 가지 요소로 구성되어 있다. 이를 위해 일련의 평면도형 영역의 문제를 다루고 학생의 오개념을 포함한 지필과제를 5명의 예비교사에게 제시하고 그들이 제출한 답변을 분석하였다. 분석 결과 예비교사들은 상당히 강한 SMK를 지니고 있음을 보여주었고, 수학의 형식적 측면을 강조하는 경향을 보였다. 또한 학생들의 오개념 분석 시 학생들의 수준을 깊게 고려하지 않았고, 오개념을 고치기 위한 교수학적 방법을 제안할 때에 구체적이지 못하고 피상적인 답변만을 제시하는 특징을 보여주었다.
Interviews with 24 pupils in grade 1-2 were used to investigate awareness of the relation between situation and computation in simple quotitive and partitive division problems as informally experienced. Then it was suggested how to connect children's informal knowledge and formal knowledge of division. Most subjects counted cubes or made drawing, and related these methods to the situation described in the problems. In result, quotitive division was experienced as a dealing situation, where the number of items represented by the divisor was repeatedly taken from the whole number. And estimate-adjust was the most frequently displayed way of experiencing partitive division. Therefore, partitive division with its two measurement variables can be related to a measurement model. And children should be taught column algorithms for division with estimated-adjust which pupils used for partitive division problems.
많은 사람들이 교수에서 교사의 지식이 중요다고 동의하고, 이에 대해 많은 연구들이 정량적인 접근 방식을 사용하여 잘 가르치기 위해 교사가 갖추어야 할 지식의 요소와 특징을 규명하려고 시도하였다. 이러한 기존의 연구들과는 달리 본 논문은 기하 영역에서 예비 교사의 지식을 정성적인 방법으로 Shulman-Fischbein 개념틀을 활용하여 해석하는 방법을 제안한다. 7명의 여 예비교사들이 본 연구에 자원하여 참여하였고, 각 예비교사는 지필 형식으로 된 일련의 과제를 수행하였다. 수집된 예비교사의 지식은 수학적 알고리즘적 SMK, 형식적 SMK, 직관적 SMK, 알고리즘적 PCK, 형식적 PCK, 직관적 PCK로 분석되었다. 해결결과 예비 교사들은 강한 SMK를 갖고 있고, 그들의 뿌리깊게 자리잡은 SMK는 변하지 않으며, 그들의 SMK와 PCK는 상당한 관련이 있고, 그들은 학생에 대한 지식과 관련하여 적절한 PCK를 갖고 있지만, 교수학적 전략을 제시함에 있어 직관적 PCK에 상대적으로 덜 고려하는 경향을 보였다. Shulman-Fischbein 개념틀을 활용하여 분석해 드러난 예비교사들의 지식은 향후 교사 양성 프로그램을 계획하는데 도움을 줄 수 있을 것이다.
수학 교육에서 수학 지식의 추상적 특성으로 인하여 수학 학습에 중요한 발생적 측면으로서 “concrete“ 에 대한 학습론적인 연구가 부족하였다. 또한 구체적 감각 조작 단계에서 형식적 추상적 조작 단계로의 아동의 인지 발달을 강조하다보니 ”concrete“와 ”abstract“의 통상적인 의미가 이분화 됨으로서 수학 학습에서 모든 연령과 수준에 무관한 상보적이고 상호 작용하는 가치를 수학 교육 연구에서 잊고 있었다. 본 논문은 발생적인 그리고 구성주의적 수학 학습에서 ”concrete”가 가져야 할 새로운 의미를 제안하였다. 새로운 의미의 “concrete“는 다양한 경험과 사물 그리고 지식과의 관계 맺음을 의미하는 ”connected“와 같은 맥락을 갖는다고 보고 몇 가지 수학교육에 관련된 의의와 중요성을 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.