• Title/Summary/Keyword: 증승개방법(增乘開方法)

Search Result 9, Processing Time 0.019 seconds

Solutions of Equations in Chosun Mathematics (조선산학(朝鮮算學)의 방정식 해법(解法))

  • Kim, Chang-Il;Yun, Hye-Soon
    • Journal for History of Mathematics
    • /
    • v.22 no.4
    • /
    • pp.29-40
    • /
    • 2009
  • we know that Zeng Cheng Kai Fang Fa is the generalization of the method of square roots and cube roots of ancient through the investigation of China mathematics. In this paper, we have research on traditional solutions equations of China mathematics and the development solutions of equations used by Chosun mathematicians.

  • PDF

The Unique Achievement of 《SanHak JeongEui 算學正義》on KaiFangFa with count-wood: The refinement of ZengChengKaiFangFa through improvement of estimate-value array (산대셈 개방법(開方法)에 대한 《산학정의》의 독자적 성취: 어림수[상(商)] 배열법 개선을 통한 증승개방법(增乘開方法)의 정련(精鍊))

  • Kang, Min Jeong
    • Journal for History of Mathematics
    • /
    • v.31 no.6
    • /
    • pp.273-289
    • /
    • 2018
  • The KaiFangFa開方法 of traditional mathematics was completed in ${\ll}$JiuZhang SuanShu九章算術${\gg}$ originally, and further organized in Song宋 $Yu{\acute{a}}n$元 dinasities. The former is the ShiSuoKaiFangFa釋鎖開方法 using the coefficients of the polynomial expansion, and the latter is the ZengChengKaiFangFa增乘開方法 obtaining the solution only by some mechanical numerical manipulations. ${\ll}$SanHak JeongEui算學正義${\gg}$ basically used the latter and improved the estimate-value array by referring to the written-calculation in ${\ll}$ShuLi JingYun數理精蘊${\gg}$. As a result, ZengChengKaiFangFa was more refined so that the KaiFangFa algorithm is more consistent.

Hong JeongHa's Tianyuanshu and Zhengcheng Kaifangfa (홍정하(洪正夏)의 천원술(天元術)과 증승개방법(增乘開方法))

  • Hong, Sung Sa;Hong, Young Hee;Kim, Young Wook
    • Journal for History of Mathematics
    • /
    • v.27 no.3
    • /
    • pp.155-164
    • /
    • 2014
  • Tianyuanshu and Zengcheng Kaifangfa introduced in the Song-Yuan dynasties and their contribution to the theory of equations are one of the most important achievements in the history of Chinese mathematics. Furthermore, they became the most fundamental subject in the history of East Asian mathematics as well. The operations, or the mathematical structure of polynomials have been overlooked by traditional mathematics books. Investigation of GuIlJib (九一集) of Joseon mathematician Hong JeongHa reveals that Hong's approach to polynomials is highly structural. For the expansion of $\prod_{k=11}^{n}(x+a_k)$, Hong invented a new method which we name Hong JeongHa's synthetic expansion. Using this, he reveals that the processes in Zhengcheng Kaifangfa is not synthetic division but synthetic expansion.

History of Fan Ji and Yi Ji (번적과 익적의 역사)

  • Hong, Sung-Sa;Hong, Young-Hee;Chang, Hye-Won
    • Journal for History of Mathematics
    • /
    • v.18 no.3
    • /
    • pp.39-54
    • /
    • 2005
  • In Chinese Mathematics, Jia Xian(要憲) introduced Zeng cheng kai fang fa(增乘開方法) to get approximations of solutions of Polynomial equations which is a generalization of square roots and cube roots in Jiu zhang suan shu. The synthetic divisions in Zeng cheng kai fang fa give ise to two concepts of Fan il(飜積) and Yi il(益積) which were extensively used in Chosun Dynasty Mathematics. We first study their history in China and Chosun Dynasty and then investigate the historical fact that Chosun mathematicians Nam Byung Gil(南秉吉) and Lee Sang Hyuk(李尙爀) obtained the sufficient conditions for Fan il and Yi il for quadratic equations and proved them in the middle of 19th century.

  • PDF

Liu Yi and Hong Jung Ha's Kai Fang Shu (유익(劉益)과 홍정하(洪正夏)의 개방술(開方術))

  • Hong, Sung-Sa;Hong, Young-Hee;Kim, Young-Wook
    • Journal for History of Mathematics
    • /
    • v.24 no.1
    • /
    • pp.1-13
    • /
    • 2011
  • In Tian mu bi lei cheng chu jie fa(田畝比類乘除捷法) of Yang Hui suan fa(楊輝算法)), Yang Hui annotated detailed comments on the method to find roots of quadratic equations given by Liu Yi in his Yi gu gen yuan(議古根源) which gave a great influence on Chosun Mathematics. In this paper, we show that 'Zeng cheng kai fang fa'(增乘開方法) evolved from a process of binomial expansions of $(y+{\alpha})^n$ which is independent from the synthetic divisions. We also show that extending the results given by Liu Yi-Yang Hui and those in Suan xue qi meng(算學啓蒙), Chosun mathematican Hong Jung Ha(洪正夏) elucidated perfectly the 'Zeng cheng kai fang fa' as the present synthetic divisions in his Gu il jib(九一集).

Kaifangfa and Translation of Coordinate Axes (개방법(開方法)과 좌표축(座標軸)의 평행이동(平行移動))

  • Hong, Sung Sa;Hong, Young Hee;Chang, Hyewon
    • Journal for History of Mathematics
    • /
    • v.27 no.6
    • /
    • pp.387-394
    • /
    • 2014
  • Since ancient civilization, solving equations has become one of the most important subjects in mathematics and mathematics education. The extractions of square roots and cube roots were first dealt in Jiuzhang Suanshu in the setting of subdivisions. Extending these, Shisuo Kaifangfa and Zengcheng Kaifangfa were introduced in the 11th century and the subsequent development became one of the most important contributions to mathematics in the East Asian mathematics. The translation of coordinate axes plays an important role in school mathematics. Connecting the translation and Kaifangfa, we find strong didactical implications for improving students' understanding the history of Kaifangfa together with the translation itself although the latter is irrelevant to the former's historical development.

A Comparison between Suanxue qimeng(Introduction to Mathematical Studies} and Muksa-jipsanbup (산학계몽과 묵사집산법의 비교)

  • Her, Min
    • Journal for History of Mathematics
    • /
    • v.21 no.1
    • /
    • pp.1-16
    • /
    • 2008
  • Suanxue qimeng(算學啓蒙) is the introduction to mathematics which greatly influenced Chosun mathematics, Muksa-jipsanbup(默思集算法) imitated the style and the contents of Suanxue qimeng, but contains a lot of problems, secondary solutions and topics which is not in Suanxue qimeng and tried to achieve educational improvement. However Muksa-jipsanbup could not use the method of rectangular arrays(方程術) because it excluded the method of positive and negative(正負術), and has a serious limitation in applying the method of extracting roots by iterated multiplication(增乘開方法) because it avoided the technique of the celestial element(天元術).

  • PDF

Zengcheng Kaifangfa and Zeros of Polynomials (증승개방법(增乘開方法)과 다항방정식(多項方程式)의 해(解))

  • Hong, Sung Sa;Hong, Young Hee;Kim, Chang Il
    • Journal for History of Mathematics
    • /
    • v.33 no.6
    • /
    • pp.303-314
    • /
    • 2020
  • Extending the method of extractions of square and cube roots in Jiuzhang Suanshu, Jia Xian introduced zengcheng kaifangfa in the 11th century. The process of zengcheng kaifangfa is exactly the same with that in Ruffini-Horner method introduced in the 19th century. The latter is based on the synthetic divisions, but zengcheng kaifangfa uses the binomial expansions. Since zengcheng kaifangfa is based on binomial expansions, traditional mathematicians in East Asia could not relate the fact that solutions of polynomial equation p(x) = 0 are determined by the linear factorization of p(x). The purpose of this paper is to reveal the difference between the mathematical structures of zengcheng kaifangfa and Ruffini-Honer method. For this object, we first discuss the reasons for zengcheng kaifangfa having difficulties to connect solutions with linear factors. Furthermore, investigating multiple solutions of equations constructed by tianyuanshu, we show differences between two methods and the structure of word problems in the East Asian mathematics.

A Study of the Representation and Algorithms of Western Mathematics Reflected on the Algebra Domains of Chosun-Sanhak in the 18th Century (18세기 조선산학서의 대수 영역에 나타난 서양수학 표현 및 계산법 연구)

  • Choi, Eunah
    • Journal of the Korean School Mathematics Society
    • /
    • v.23 no.1
    • /
    • pp.25-44
    • /
    • 2020
  • This study investigated the representation and algorithms of western mathematics reflected on the algebra domains of Chosun-Sanhak in the 18th century. I also analyzed the co-occurrences and replacement phenomenon between western algorithms and traditional algorithms. For this purpose, I analyzed nine Chosun mathematics books in the 18th century, including Gusuryak and Gosasibijip. The results of this study are as follows. First, I identified the process of changing to a calculation by writing of western mathematics, from traditional four arithmetical operations using Sandae and the formalized explanation for the proportional concept and proportional expression. Second, I observed the gradual formalization of mathematical representation of the solution for a simultaneous linear equation. Lastly, I identified the change of the solution for square root from traditional Gaebangsul and Jeungseunggaebangbeop to a calculation by the writing of western mathematics.