• 제목/요약/키워드: 역사발생원리

검색결과 51건 처리시간 0.02초

역사-발생적 원리에 따른 변증법적 방법의 수학학습지도 방안

  • 한길준;정승진
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제12권
    • /
    • pp.67-82
    • /
    • 2001
  • 발생적 원리는 수학을 공리적으로 전개된 완성된 것으로 가르치는 형식주의의 결함을 극복하기 위하여 제기되어온 교수학적 원리로, 수학을 발생된 것으로 파악하고 그 발생을 학습과정에서 재성취하게 하려는 것이다. 특히, 수학을 지도함에 있어서 역사적으로 발생, 발달한 순서를 지켜 지도해야 한다는 것이 역사-발생적 원리로, 수학이 역사적으로 발생, 발달 되어온 역동적인 과정을 학생들이 재경험해 보게 하기 위해서는 이러한 일련의 과정을 효과적으로 설명할 수 있는 교수-학습 방법이 필요하다. 변증법적인 방법론은 헤겔에 의해서 꽃을 피운 철학으로, 정일반일합(正一反一合)의 원리에 따라 사물의 발생과 진화 과정을 역동적으로 설명할 수 있는 방법론이다. 따라서, 본 연구는 초등학교에서 역사-발생적 원리에 따라 수학을 지도할 수 있는 방법으로 변증법적인 방법을 고찰하여, 역사-발생적 원리의 수학 교수-학습 방법에 대한 시사점을 얻고자 한다.

  • PDF

Clairaut의 <기하학 원론>에 나타난 역사발생적 원리에 대한 고찰 (A study on the historico-genetic principle revealed in Clairaut's )

  • 장혜원
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제13권3호
    • /
    • pp.351-364
    • /
    • 2003
  • Clairaut의 <기하학 원론>은 Euclid의 <원론>의 논리-연역적인 전개 방식에 대항하여 역사발생적 원리에 입각하여 쓰여진 최초의 기하 교재이다. 본 논문은 <기하학 원론>을 고찰함으로써 Clairaut가 생각한 역사발생적 원리를 파악하고, 아울러 학교 수학에의 적용 방안을 탐색하는 것을 목표로 한다. 이를 위해, <기하학 원론>의 내용 전개 방식으로부터 저자의 기본 아이디어에서 비롯된 다섯 가지 특징을 추출한다. 필요에 의한 기하의 출현, 실생활 문제 해결을 통한 접근, 초보자에게 자연스런 방법으로서 직관적 요소와 논리적 요소의 조화, 기본 원리의 파악, 활동적 원리의 구현. 이러한 특징은 Clairaut의 역사발생적 원리를 구체적으로 드러내며, 기하 영역의 교재 구성 및 교수 실제를 위한 시사점을 제공한다. 그리고, 학교 기하에서 매우 유용한 두 개의 정리를 예로 들어 그의 역사발생적 원리를 재음미한다.

  • PDF

수학과 교수-학습에서 수학사 활용에 교육적 함의: 수월성 교육을 중심으로 한 미적분 지도의 예 (Didactical Meaning of using History of mathematics in Teaching and Learning Mathematics)

  • 한경혜
    • 한국수학사학회지
    • /
    • 제19권4호
    • /
    • pp.31-62
    • /
    • 2006
  • 본 논문에서는 먼저 수학사를 수업에 활용하고자 하는 이론적 근거를 여러 가지 교육적 측면에서 고찰한다. 아울러 수학적 인식에 관한 개인적인 발달과 역사적 발달 사이의 관계를 토대로 수학사 활용의 교육적 유용성을 가장 강력하게 이론적으로 뒷받침하는 역사 발생 원리의 생성, 전개 과정 및 그 의의와 한계 등을 논한다. 또한 여러 가지 측면에서 이론적 근거가 마련되고 있는 수학사 활용에 대한 긍정적인 입장에서 구체적인 방안을 기준과 함께 제시하였다. 다음으로 지금까지 논의된 수학 영재 프로그램 개발의 방향과 실제를 개관하고 수학사를 접목하는 것에 대한 근거를 밝혔다. 마지막으로 수학사 활용의 예를 미분개념의 이해를 중심으로 제시하였다.

  • PDF

역사발생적 수학교육 원리에 대한 연구(1) - 증명의 의미 지도의 역사발생적 전개 (A Study on the Historic-Genetic Principle of Mathematics Education(1) - A Historic-Genetic Approach to Teaching the Meaning of Proof)

  • 우정호;박미애;권석일
    • 대한수학교육학회지:학교수학
    • /
    • 제5권4호
    • /
    • pp.401-420
    • /
    • 2003
  • 증명 학습에 있어서 많은 어려움이 특히, 증명이 도입되는 중학교 기하 단원의 학습에서 야기되고 있으며, 무엇보다도 많은 학생들이 증명의 의미를 이해하지 못하는 것은 간과하기 어려운 문제점이다. 본 고에서는 기하의 역사 발생적 단계에 따른 증명의 의미 지도가 증명 지도 개선을 위한 하나의 방안이 될 수 있음을 밝히고자 하였다. Branford가 제시한 바와 같이 역사-발생적 전개를 통하여 증명의 의미를 지도하는 방안을 모색해 보고자, Euclid원론이 성립하기까지의 기하의 역사적 발달 과정과 병행하여 실험적, 직관적, 과학적 단계를 거쳐 발전되어 온 증명의 발생 과정을 살펴보고 지도 과정을 분석해 보았다. 그리고 실험적, 직관적 증명 단계를 거쳐 수학적인 증명을 도입하는 지도 과정에 따라 삼각형의 내각의 합에 대한 명제의 증명 지도를 중학교 1학년 학생들을 대상으로 실시해 보았다. 본 고에서는 그러한 결과를 통하여 역사-발생적 접근이 학생들에게 증명의 의미를 이해시키는데 큰 도움이 된다는 것을 확인하였다.

  • PDF

역사발생적 관점에서 본 행렬 지도의 재음미 (A Review of Teaching the Concept of the Matrix in relation to Historico-Genetic Principle)

  • 조성민
    • 한국학교수학회논문집
    • /
    • 제12권1호
    • /
    • pp.99-114
    • /
    • 2009
  • 선형대수는 최근 이공계열 뿐만 아니라 인문 사회 과학 분야에서도 많은 관심을 받고 있다. 그러나 선형대수는 대학의 기초 과목으로 채택된 지 20-30년 밖에 되지 않은 분야로, 선형대수의 지도에 대한 연구는 상대적으로 많지 않은 편이다. 이에 1990년 선형대수 교육과정 연구 단체(The Linear Algebra Curriculum Study Group)가 결성되고, 선형대수 지도를 개선하기 위한 움직임이 다양하게 나타나고 있다. 본 논문에서는 선형대수의 주요 도구 중 하나인 행렬과 관련된 연구들을 살펴보고, 역사발생적 원리를 바탕으로 한 행렬 지도 방법을 제안하고자 한다. 이를 위해 행렬과 행렬식, 연립일차방정식과 행렬, 일차변환의 개념 발달 과정을 분석하고, 역사발생적 관점에서의 행렬 지도 방안을 모색하였다.

  • PDF

역사발생적 원리에 따른 교수학습 모듈을 적용한 수행평가의 교수학적 효과 분석 (Pedagogical Effect of Learning-Teaching Module of Unit for the Logarithm According to Historico-Genetic Principle)

  • 김부미;정은선;안연진
    • 대한수학교육학회지:학교수학
    • /
    • 제11권3호
    • /
    • pp.431-462
    • /
    • 2009
  • 본 연구에서는 지수의 역으로 정의되는 로그를 학습한 학생들을 대상으로 로그 개념과 성질에 대한 오류를 조사하고, 학생들 스스로 오류를 교정할 수 있도록 역사 발생적 수학 학습 지도 원리에 따른 교수-학습 모듈(module)을 개발하여 수행평가로 적용하고 그 교수학적 효과를 분석하였다. 교수-학습 모듈은 로그에 대한 수학적 분석, 역사발생적 과정에 대한 분석, 학생들의 오류에 대한 심리학적 분석을 바탕으로 로그의 정의와 기본 성질 단원을 중심으로 개발하였다. 교수-학습 모듈의 교수학적 효과는 로그의 뜻과 성질에 대한 사전 사후 지필 평가 결과의 정답률과 오류 발생률을 비교 분석하였다. 구체적으로 유의수준 .05에서 단일표본에 대한 t-검정 결과, 교수-학습 모듈을 적용한 수행평가가 짧은 시간동안 이루어졌음에도 효과가 있는 것으로 나타났다. 그리고 로그의 뜻과 성질 단원에서 나타난 5가지 오류 유형인 '기호나 용어, 개념에 대한 이해 부족으로 인한 오류(E1)', '정리나 성질에 대한 불완전한 이해로 인한 오류(E2)'와 '선행 지식의 부족으로 인한 오류(E3)', '계산 실수로 인한 오류(E4)', '풀이 과정의 중단으로 인한 오류(E5)' 중 교수-학습 모듈을 적용한 결과, E2와 E1 오류가 크게 개선되었다.

  • PDF

개혁 미분 방정식 수업에 기반한 학습자의 고유치 고유벡터 개념 발생 및 이해 (Students' Conceptual Development of Eigenvalue and Eigenvector in Reformed Differential Equation Course)

  • 신경희
    • 한국수학사학회지
    • /
    • 제17권4호
    • /
    • pp.133-152
    • /
    • 2004
  • 18세기 오일러와 베르누이에 의해 최초로 등장했던 고유치의 개념 발생의 장은 탄성을 가진 물체의 변위에 관련된 미분 방정식의 풀이 해법 문제였다. 역사 발생적 원리에 따라 용수철에 매달린 물체의 변위 문제를 모델로 개혁 미분 방정식 수업에 기반한 학습자의 고유치 고유벡터의 효과적인 개념 발생의 가능성을 논한다. 소그룹 토의 학습으로 진행된 교수 학습 모델의 실제 적용 과정과 방법, 효과적인 인지변화에 대한 교수학적 요인과 학생들의 수학에 대한 정의적 태도의 변화를 진술한다.

  • PDF

학교 수학에 활용 가능한 확률.통계 영역에서의 역사적 패러독스 (Historic Paradoxes of Probability and Statistics Usable in School Mathematics)

  • 이종학
    • 한국수학사학회지
    • /
    • 제24권4호
    • /
    • pp.119-141
    • /
    • 2011
  • 수학의 여러 분야 가운데 패러독스가 가장 풍부한 분야는 확률 통계 영역이다. 이것은 역사적으로 확률 통계 이론의 전개 과정에서 지난 시기 동안 연구자들이 직관과 상식에 의해 참이라고 믿고 있었지만 그 사이에는 감춰져 있던 다양한 패러독스들이 존재했으며, 이 패러독스들을 수학자들이 밝히고 수학적으로 해결해 나가면서 현재의 형식적 체계에 이르게 되었음을 시사하는 것이다. 학교 수학에서 확률 통계 영역의 교수 학습 자료로 적절하게 활용할 수 있는 역사적 패러독스들은 그 당시 현실적 맥락의 도입에 따른 학생의 흥미와 관심을 불러일으킬 수 있으며, 또한 교실 수업에서 역사 발생적 원리에 따라 패러독스를 제기하고 해결하고자 고민한 수학자들의 수학적 사고를 엿볼 수 있는 타당한 교수 학습 자료이다. 더불어 확률 통계 영역에서 역사적 패러독스를 활용하는 교실 수업은 형식적이고 연역적인 학교 수학을 학생의 발견적 형성적인 측면을 강조하는 수학으로 변화하게 할 수 있다. 이에 본 연구에서는 확률 통계 영역의 형식화 과정에서 발생한 역사적인 패러독스들 중에서 중 고등학교 확률 통계 수업에 활용할 수 있는 패러독스들에 대해서 알아보고, 또한 이 패러독스들을 교실 수업에 활용할 수 있는 구체적인 방안에 대해서 논해보고자 한다.

무리수 개념의 역사적 발생과 역사발생적 원리에 따른 무리수 지도

  • 장혜원
    • 한국수학사학회지
    • /
    • 제16권4호
    • /
    • pp.79-90
    • /
    • 2003
  • This paper aims to consider the genesis of irrational numbers and to suggest a method for teaching the concept of irrational numbers. It is the notion of “incommensurability” in geometrical sense that makes Pythagoreans discover irrational numbers. According to the historica-genetic principle, the teaching method suggested in this paper is based on the very concept, incommensurability which the school mathematics lacks. The basic ideas are induced from Clairaut's and Arcavi's.

  • PDF