• 제목/요약/키워드: 양중관리

Search Result 77, Processing Time 0.018 seconds

A computation model for Resource-based Lifting loads of the lift-cars for super high-rise buildings (초고층 건축물 리프트카 양중계획수립을 위한 자원기반의 양중부하 산정 모형)

  • Han, Choong-Hee;Lee, Jun-Bok;Won, Seo-Kyung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.5
    • /
    • pp.135-143
    • /
    • 2012
  • Constructing super-tall buildings is significantly different from constructing general ones in every technological and managerial aspects. Especially lift-car operations planning and management is one of core parts among various management techniques required during the course of the whole construction process of the super-tall buildings because vertical movements of physical resources enormously affect the efficiency of the construction processes. However, discrepancy between lifting plans and actual lifting operations causes serious efficiency problems. As an effort to solve the problem, this research suggests an improved method of estimating resource-based lifting load. The computing model developed as a result of this research facilitates more accurate computation of the total operation time and the maximum lifting capacity of the lift-cars. Further, this research can be developed as a decision support system for the total lift-car operations management.

Development of the lift-up and procurement system for Just-in-Time in the Building Construction (건설공사의 적시생산(Just-In-Time)을 위한 양중시스템 개발)

  • Shin Bong-Soo;Kim Chang-Duk;Suh Sang-Wook;Lim Hyoung-Chul;Choi Woon-Ki
    • Korean Journal of Construction Engineering and Management
    • /
    • v.4 no.4 s.16
    • /
    • pp.182-191
    • /
    • 2003
  • The material lift-up and procurement management for high-rise buildings is complex and critical key to the success of projects. It has been hardly managed by the heuristic or rule-of-thumb techniques which are adapted in usual construction building sites. Especially in downtown high-rise residential building project sites, the limit of heuristic management techniques is critical. It has space constraint for materials loading and site transportation especially in finish work phases in which construction period diverse work trades struggle for their own material and manpower transportation. Hence, it is essential to adapt JIT(Just-In-Time) concept in these particular types of building construction project sites. According to the analysis of the case project sites, the communication and flow of relevant information regarding material lift-up and transportation in project sites is the key factor for successful performance. Therefore, this study analyzes the flow and site transportation of the key materials and provides the system, PLUTO(Procurement & Lift-Up for material Transport Optimizing system). This study also applies the system in the case site and verifies the model validation in actual project.

Models for Predicting Hoisting Times of Tower Crane in the High-rise Building Construction (고층건축공사 타워크레인 양중시간 예측모델)

  • Lee Jong-Ryou;Jeon Yong-Seok;Park Chan-Sik
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2004.11a
    • /
    • pp.472-475
    • /
    • 2004
  • The objective of this study is to develope reasonably accurate prediction models to assess hoisting times of tower cranes in the high-rise building construction. The efficient use of the tower crane is critical to achieving the Planned floor cycle time. This research describes the derivation of mathematical models to predict the hoisting times in using a tower crane. 28 factors such as nature of load, characteristics of tower cranes, hoisting movements, operation of cranes, weather conditions and so on is considered to influence hoisting times. In order to develop the predicting hoisting times Correctly, it is divided hoisting upward and downward. Then multiple regression models for predicting supply and return hoisting times have been built up separately.

  • PDF

An Analysis of The Critical Risk Factors in Failure Cases of Lifting Equipment Plans in High-rise Construction Project (초고층 프로젝트 양중 계획의 실패 유형별 핵심 리스크 요인 분석)

  • Kim, Nam-Gyun;Kim, Yea-Sang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.4
    • /
    • pp.73-83
    • /
    • 2013
  • Recently, not only around Korea but also other countries shows a pattern of arising high-rise building construction project which was delayed or aborted during global economic crises and recession. Although the market starts to stretch, It is getting competitive to win a contract in high-rise construction project between contractors due to lack of competitive advantage especially to Korea contractors. To get that, Korean contractors needs lifting equipment plan. But currently, they depend on the empirical methods and that cause schedule delay, not controlled cost management problem. Therefore, this research is to improve the accuracy of Lifting plan by analyzing the current issues of Lifting plan system and deducing the types of failures with planning factors, as well as analyzing the impact on schedule and cost control and safety management by each failure mode. Also, by analyzing detail risk factors per Lifting Equipment with FMEA, to infer the critical risk factor on high-rise construction project.

Optimization of T/C Lifting Plan using Dependency Structure Matrix (DSM) (DSM을 활용한 타워크레인 양중계획 최적화에 관한 연구)

  • Kim, Seungho;Kim, Sangyong;Jean, Jihoon;An, Sung-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.2
    • /
    • pp.151-159
    • /
    • 2016
  • Tower crane (T/C) is one of the major equipment that is highly demanded in construction projects. Especially, most high-rise building projects require T/C to perform lifting and hoisting activities of materials. Therefore, lifting plan of T/C needs to reduce construction duration and cost. However, most lifting plan of the T/C in construction sites has still performed depending on experience and intuition of the site manager without systematic process of rational work. Dependency structure matrix (DSM) is useful tool in planning the activity sequences and managing information exchanges unlike other existing tools. To improve lifting plan of T/C efficiently, this study presents a framework for the scheduling T/C using DSM through the case study in real world construction site. The results of case study showed that the scheduling T/C using DSM is useful to optimize the T/C lifting plan in terms of easiness, specially in the typical floor cycle lifting planning.

A Simple Formula for the Number of Lifting Times of Finishing Materials in High-rise Complex Building Construction (마감자재 양중횟수 산정 약산식 제안 - 초고층 주상복합 건물)

  • Mun Min-Sik;Choi Seock-Hyun;Hyun Chang-Taek;Koo Kyo-Jin
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.622-625
    • /
    • 2003
  • The purpose of the study is to propose a simple formula of lifting times of finishing materials on establishing the high-rise complex building, it is expected to help the efficient planning of lifting. The planning of lifting the finishing materials becomes important as the buildings get higher. The efficient level of lifting times has been calculated from 'Packaging' to improve the existing studies on the planning of lifting ; 'Packaging' means 'Making a bundle as one unit' basing on the characteristics of the individual materials. The simple formula has been produced regarding two variables of the typical floor area and the number of rooms per area.

  • PDF

An Algorithm for Hoisting Time Calculation in Super-tall Building Construction (건설 리프트 가감속 능력을 고려한 양중시간 산정 알고리즘 개발)

  • Cho, Chang-Yeon;Shin, Yoon-Seok;Won, Seo-Kyung;Kim, Jung-Yeol;Cho, Moon-Young
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.6
    • /
    • pp.120-129
    • /
    • 2011
  • An installation of the construction lift has a few limitations by many constrains and these have influences on labor productivity, that can be changed by vertical-transportation management. In the super-tall building construction, a management of construction lift operation is one of the most important factor, but existing methodologies depend on skilled practitioners' experiences. And it is true that the expertise resulted by the experiences does not transfer to the next generation. This study is a part of lifting-management simulation development which aims at the optimal construction lift management. A proposed algorithm is focus on lifting time calculation considering an acceleration capability. This research evaluates the result accuracy using comparative analysis on simulation result and field measuring time.

A Study of the Tower Crane Hoisting Time Estimation Simulation Model with Climate Element for the High-Rise Building Construction (기후요소를 고려한 초고층 건설공사의 타워크레인 양중시간 예측 시뮬레이션 모델)

  • Yang, Kanghyeok;Lee, Hyun-Soo;Park, Moonseo;Jung, Minhyeok;Hwang, Sungjoo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.2
    • /
    • pp.96-107
    • /
    • 2013
  • Tower crane hoisting plan is one of the key element for the success of entire High-Rise Building construction. Hoisting time is the basic factor to appropriate hoisting plan which need to the hoisting load estimate and tower crane selection. With this reason, accurate hoisting time is needed to the proper hoisting plan. The current hoisting time estimation for High-Rise Building focus on the hoisting cycle time estimation with historical data. However, this method underestimated the external influences like environmental factor. Thus, this paper aims to develop the hoisting time estimation model with discrete event simulation which include the wind influences with certain height. According to the simulation result, the hoisting time which applied wind influence is increasing with height growth. Because of the high speed wind, the upper area of building has more operation delay time than the mechanical operation time. Seoul, the research area, has the most fastest wind speed on April and the least on October. Due to these differences of wind speed, the hoisting time is estimated with significant differences between April and October. This hosting time estimation model would be used for estimating the influence of wind. Moreover, this could apply to make the realistic hoisting plan.

A Study of the High-rise building's Lift-up Management - through Division of Loading Factors of Equipment materials (초고층 건축 공사의 효과적인 양중 제안 - 설비공사 양중부하 분배 개선 방안)

  • Chung Yun-Woo;Kim Eun-Sang;Suh Hyun-Ah;Kim Chang-Duk
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2004.11a
    • /
    • pp.539-542
    • /
    • 2004
  • Nowadays, High-rise building becomes higher and bigger than ever. As a result, lots of construction materials are needed at the same times. Because of divided diverse process of construction, several different Processes concur simultaneously with complexity of procurement. So, effective construction material supply and lift-up are essential part of the spot. Especially, when ending part of construction, there are much conflict between finishing and equipment materials also problems of folding lift-up. The Purpose of this paper is suggesting better effective lift-up system through analysis of loading factors.

  • PDF

Lifting Work Process Optimization Method in High-rise Building Construction Through Improvement of CYCLONE Modeling Method (CYCLONE 모델링 기법 개선을 통한 초고층 공사의 자재 양중 작업 프로세스 최적화 연구)

  • Hawng, Doowon;Kwon, Okyung;Choi, Yoonki
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.2
    • /
    • pp.58-70
    • /
    • 2017
  • The planning for material lifting operations is one of the key processes in high-rise building construction. Several previous studies have used rough calculations by referring to existing practices or establishing a target value for lifting cycle time or operating rate. Therefore, the purpose of this study is to propose a material lifting process optimization method for reducing the lifting cycle time and increasing the operating rate. In this study, we improve the cyclic operation network (CYCLONE) modeling method that considers the duration and zone information of each work task. This method can be used to hand over work tasks to another crew group in the work process. According to this methodology, this study optimizes the material lifting process, performs a sensitivity analysis, and evaluates the field applicability of the proposed material lifting process optimization method. Therefore, the optimized process was then applied to a high-rise building construction site. The lifting work process time and operating rate for the simulated as - is lifting process data, optimized process data, and field application result data were compared for each lifting height. From this comparison, the effectiveness of the optimization methodology was confirmed.