Journal of Elementary Mathematics Education in Korea
/
v.18
no.2
/
pp.319-339
/
2014
Recently, the discussion about division and partition of fraction increases in Korea's national curriculum documents. There are varieties of assertions arranging from the opinion that both interpretations are unintelligible to the opinion that both interpretations are intelligible. In this paper, we investigated a possibility that division and partition interpretation of fraction become valid. As a result, it is appeared that division and partition interpretation of fraction can be defined reasonably through expansion of interpretation of natural number. Besides, division and partition interpretation of fraction can be work in activity, such as constructing equation from sentence problem, or such as proving algorithm of fraction division.
We analyzed errors committed by Korean prospective elementary teachers in finding and interpreting quotient and remainder within measurement division of fractions. 65 prospective elementary teachers were participated in this study. They solved a word problem about measurement division of fractions. We analyzed solutions of all participants, and interviewed 5 participants of them. The results reveal many of these prospective teachers could not tell what fractional part of division result means. Thses results suggest that teacher preparation program should emphasize interpreting calculation results within given situations.
Journal of Elementary Mathematics Education in Korea
/
v.20
no.4
/
pp.521-539
/
2016
The structures of partitive and quotitive division of fractions are dealt with differently, and this led to using partitive division context for helping develop invert-multiply algorithm and quotitive division for common denominator algorithm. This approach is unlikely to provide children with an opportunity to develop an understanding of common structure involved in solving different types of division. In this study, I propose two approaches, measurement approach and isomorphism approach, to develop a unifying understanding of fraction division. From each of two approaches of solving quotitive division based on proportional reasoning, I discuss an idea of constructing a measure space, unit of which is a quantity of divisor, and another idea of constructing an isomorphic relationship between the measure spaces of dividend and divisor. These ideas support invert-multiply algorithm for quotitive as well as partitive division and bring proportional reasoning into the context of fraction division. I also discuss some curriculum issues regarding fraction division and proportion in order to promote the proposed unifying understanding of partitive and quotitive division of fractions.
The purpose of this study is to justify the fraction division algorithm in elementary mathematics by applying the definition of natural number division to fraction division. First, we studied the contents which need to be taken into consideration in teaching fraction division in elementary mathematics and suggested the criteria. Based on this research, we examined whether the previous methods which are used to derive the standard algorithm are appropriate for the course of introducing the fraction division. Next, we defined division in fraction and suggested the unit-circle partition model and the square partition model which can visualize the definition. Finally, we confirmed that the standard algorithm of fraction division in both partition and measurement is naturally derived through these models.
The purpose of this study was to analyze the error patterns and sentence types in word problems with respect to 1$\frac{3}{4}$$\div$$\frac{1}{2}$ which were made by the pre-service elementary teachers, and to suggest the clues to the education in pre-service. Korean elementary teachers in pre-service misunderstood 'divide with $\frac{1}{2}$' to 'divide to 2' by the Korean linguistic structure. And they showed a new error type of 1$\frac{3}{4}$$\times$2 by the result of calculation. Although they are familiar to 'inclusive algorithm' they are not good at dealing with the fractional divisor. And they are very poor at the 'decision the unit proportion' and the 'inverse of multiplication'. So, it is necessary to teach the meaning of the fractional division as 'decision the unit proportion' and 'inverse of multiplication' and to give several examples with respect to the actual situation and context.
Journal of Elementary Mathematics Education in Korea
/
v.22
no.4
/
pp.385-403
/
2018
Fraction division can be categorized as partitive division, measurement division, and the inverse of a Cartesian product. In the contexts of quotitive division and the inverse of a Cartesian product, the multiply-by-the-reciprocal algorithm is drawn well out. In this study, I analyze the potential and significance of the method of using $1{\div}$(divisor) as an alternative way of developing the multiply-by-the-reciprocal algorithm in the context of quotitive division. The method of using $1{\div}$(divisor) in quotitive division has the following advantages. First, by this method we can draw the multiply-by-the-reciprocal algorithm keeping connection with the context of quotitive division. Second, as in other contexts, this method focuses on the multiplicative relationship between the divisor and 1. Third, as in other contexts, this method investigates the multiplicative relationship between the divisor and 1 by two kinds of reasoning that use either ${\frac{1}{the\;denominator\;of\;the\;divisor}}$ or the numerator of the divisor as a stepping stone. These advantages indicates the potential of this method in understanding the multiply-by-the-reciprocal algorithm as the common structure of fraction division. This method is based on the dual meaning of a fraction as a quantity and the composition of times which the current elementary mathematics textbook does not focus on. It is necessary to pay attention to how to form this basis when developing teaching materials for fraction division.
The purpose of this study was to analyze the extendibility of division algorithm and Euclid algorithm for integers to algorithms for rational numbers based on word problems of fraction division. This study serviced to upgrade professional development of elementary and secondary mathematics teachers. In this paper, fractions were used as expressions of rational numbers, and they also represent rational numbers. According to discrete context and continuous context, and measurement division and partition division etc, divisibility was classified into two types; one is an abstract algebraic point of view and the other is a generalizing view which preserves division algorithms for integers. In the second view, we raised some contextual problems that can be used in school mathematics and then we discussed division algorithm, the greatest common divisor and the least common multiple, and Euclid algorithm for fractions.
In the field of arithmetic in mathematics education, there has been lack of fine-grained investigations addressing the relationship between students' construction of division knowledge with fractional quantities and their whole number division knowledge. This study, through the analysis of part of collected data from a year-long teaching experiment, presents a possible constructive itinerary as to how a student could modify her unit-segmenting scheme to deal with various fraction measurement division situations: 1) unit-segmenting scheme with a remainder, 2) fractional unit-segmenting scheme. Thus, this study provides a clue for curing a fragmentary approach to teaching whole number division and fraction division and preventing students' fragmentary understanding of the same arithmetical operation in different number systems.
This dissertation is aimed to investigate the reason why a contextualization is needed to help the meaningful teaching-learning concerning multiplications and divisions of fractions, the way to make the contextualization possible, and the methods which enable us to use it effectively. For this reason, this study intends to examine the differences of situations multiplying or dividing of fractions comparing to that of natural numbers, to recognize the changes in units by contextualization of multiplication of fractions, the context is set which helps to understand the role of operator that is a multiplier. As for the contextualization of division of fractions, the measurement division would have the left quantity if the quotient is discrete quantity, while the quotient of the measurement division should be presented as fractions if it is continuous quantity. The context of partitive division is connected with partitive division of natural number and 3 effective learning steps of formalization from division of natural number to division of fraction are presented. This research is expected to help teachers and students to acquire meaningful algorithm in the process of teaching and learning.
The purpose of this study was to analyze operation sense in detail with regard to division of fraction. For this purpose, two sixth grade students who were good at calculation were clinically interviewed three times. The analysis was focused on (a) how the students would understand the multiple meanings and models of division of fraction, (b) how they would recognize the meaning of algorithm related to division of fraction, and (c) how they would employ the meanings and properties of operation in order to translate them into different modes of representation as well as to develop their own strategies. This paper includes several episodes which reveal students' qualitative difference in terms of various dimensions of operation sense. The need to develop operation sense is suggested specifically for upper grades of elementary school.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.