• 제목/요약/키워드: 무한소수

검색결과 21건 처리시간 0.143초

무한소수 기호: 불투명성과 투명성 (The Infinite Decimal Representation: Its Opaqueness and Transparency)

  • 이지현
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제24권4호
    • /
    • pp.595-605
    • /
    • 2014
  • 소수점 아래 0에서 9까지의 임의의 숫자가 무한히 나열되는 무한소수는 '소수점 아래끝자리까지의 모든 숫자를 명확하게 알 수 없는 모호한 수'라는 불투명성을 가지고 있다. 이 논문에서는 이와 같은 불투명성을 야기하는 무한소수 기호로부터 어떻게 연속적인 수를 창조할 수 있었는지를 분석하였다. 무한소수 기호의 완비성 공리에 대한 투명성에 의존하여, 실수 개념이 엄밀하게 형식화되기 이전에도 수학자들은 실수 개념을 다룰 수 있었다. 이 논문의 수학적 역사적 분석은 무한소수에 의존하여 실수 개념을 전개하는 학교수학의 접근과, 완비순서체로서의 실수의 형식적 정의를 다루는 대학수학의 접근 사이에서 야기될 수 있는 이중단절의 문제를 극복하는 데 도움이 될 수 있을 것이다.

  • PDF

무한소수에 대한 학생들의 이해 (A Study on understanding of infinite decimal)

  • 박달원
    • 한국학교수학회논문집
    • /
    • 제10권2호
    • /
    • pp.237-246
    • /
    • 2007
  • 무한소수에 대한 학생들의 오개념은 무한소수의 표현방법과 표현된 무한소수의 해석에 원인이 있으며 유리수와 무리수에 대한 학생들의 자의적인 정의도 원인이 있는 것으로 나타났다. 무한소수에 대한 학생들의 이해의 유형은 순환유추형, 규칙유추형, 순환-비순환유추형, 비유추형으로 분류되었으며, 무리수와 유리수에 대한 자의적인 정의에 따라 무한무리유추형, 규칙유리-비규칙 무리유추형으로 분류되었다.

  • PDF

중학교에서 순환소수 취급과 무리수 도입에 관한 고찰 (A Thought on Dealing with Repeating Decimals and Introducing Irrational Numbers (in the Middle School Mathematics))

  • 김흥기
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제14권1호
    • /
    • pp.1-17
    • /
    • 2004
  • 본 연구는 중학교 과정에서 순환소수의 취급에 관하여 알아보는 것으로 교육과정에 제시된 관련 내용을 분석하고 그에 따른 현행 교과서를 살펴보아 문제점을 알아보았고, 다음에 관련된 분야의 일부 외국교과서를 비교 분석하여 보았다. 현행 교육과정과 교과서 보다 바람직한 지도방안은 우선 체계적인 학습을 할 수 있도록 교육과정에서보다 적합한 학습내용과 그 취급을 제시해야만하고, 이에 따라 교과서도 보다 적합하게 순환소수를 취급하고 그에 따른 무리수를 도입하는 것이 바람직 할 것이다. 특히 순환소수는 무한소수가 아닌 그냥 소수로 도입하여 숫자 0을 순환마디로 사용할 것을 제시하고, 교육의 다양성을 위해서 직관적이기는 하지만 현행교과서에서의 취급보다는 일반적인 방법으로 순환소수와 유리수의 관계를 명확히 규명하여 무리수의 도입을 무한소수로서 잘 도입하도록 제시하였다. 그리고 무리수라는 용어의 도입만은 현행 교육과정과는 달리 순환소수의 취급 과정에서 함께 다루는 것이 바람직함을 제시하였다.

  • PDF

실수로의 수 체계 확장을 위한 유리수의 재해석에 대하여 (On Explaining Rational Numbers for Extending the Number system to Real Numbers)

  • 신보미
    • 한국학교수학회논문집
    • /
    • 제11권2호
    • /
    • pp.285-298
    • /
    • 2008
  • 제 7 차 중학교 교육과정에서는 무리수를 순환하지 않는 무한소수로 도입하기 위해 유리수를 소수와 관련하여 재해석하도록 하도 있다. 여러 선행연구는 중학교 과정에서 유리수와 소수의 관계를 살핌에 있어 실제 나누어 보는 전략이 주요한 교수학적 도구가 됨을 지적하였다. 이 연구에서는 나눗셈 알고리즘을 통한 산술적 조작 활동의 관점에 비추어 정수와 유한소수를 9 또는 0이 순환하는 소수로 다루는 접근 방안의 적절성을 분석하였다. 또한 무리수를 무한소수로 도입하는데 '무리수=비순환소수', '유리수=순환소수'와 같은 대응이 필수적인가에 대해서도 음미해보았다. 나아가 무리수 도입을 위한 대안적인 방안에 대해서도 간접적으로 살펴보았다.

  • PDF

'어떤 실수로의 극한'을 사용하지 않고 무한소수를 정의하기 (Defining the Infinite Decimal without Using the 'Limit to a Real Number')

  • 박선용
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제26권2호
    • /
    • pp.159-172
    • /
    • 2016
  • 이 연구에서는, 이지현(2014; 2015)이 이중단절의 극복을 위해 제안한 무한소수를 통한 실수 도입방식의 특징에 대해 살펴보고, 그 접근방식의 수학적 기초인 Li(2011)의 제안에 대해 분석하고 전통적인 축소구간열을 활용한 실수도입 방식과 비교하였다. 분석의 결과, 이지현과 Li의 제안에서는 직선의 각 점에 대응하는 무한소수 표현을 만드는 과정에서 '순환논리'에 빠질 위험이 있으며, 이에 대한 수학적 그리고 교육적 보완을 위해, 실수의 구성 과정동안 '어떤 실수로의 극한'을 사용하지 않는 조치가 이루어져야함을 알 수 있었다. 이에, 이 연구에서는 기하학적 축소구간공리를 사용하여 무한소수를 수열로 정의하는 전통적 방식이 그에 대한 적합한 보완책이 될 수 있음을 제기하였다.

소수에 의한 실수 정의의 의미 (The Meaning of the Definition of the Real Number by the Decimal Fractions)

  • 변희현
    • 한국수학사학회지
    • /
    • 제18권3호
    • /
    • pp.55-66
    • /
    • 2005
  • 현재 학교수학에서는 소수를 기초로 무리수와 실수를 지도한다. 이와 관련하여, 이 글에서는 역사적 분석을 통하여 무한소수에 의한 실수와 무리수 정의의 본질을 확인하였다. 역사적으로 실수의 형성은 모든 크기의 수치화, 무리수의 형성은 통약 불가능한 양의 수치화라는 의미를 가지고 있다. 이러한 역사적 분석에 기초하여 실수 개념에의 의미있는 접근을 기대할 수 있는 구체적 지도 방안을 제안하였다.

  • PDF

예비교사의 무리수의 개념과 표현에 대한 이해 (Pre-Service Teachers' Understanding of the Concept and Representations of Irrational Numbers)

  • 최은아;강향임
    • 대한수학교육학회지:학교수학
    • /
    • 제18권3호
    • /
    • pp.647-666
    • /
    • 2016
  • 본 연구는 수학적 표현이 개념적 이해를 형성하는 수단이라는 관점을 토대로 예비교사들의 무리수 개념과 표현 방식에 대한 이해 정도를 조사하여 무리수 개념 지도를 위한 교수학적 시사점을 도출하고자 하였다. 이에 무리수 개념과 표현, 다양한 표현, 표현간 번역 항목을 조사하는 검사도구를 예비교사 48명을 대상으로 적용하였다. 체계적인 분석을 위해 무리수 표현을 비(非)분수, 소수, 기호, 기하, 수직선, 함숫값 표현으로 범주화하여 활용하였다. 분석 결과, 예비교사들은 무리수 정의의 비(非)분수 표현에 내포된 통약불가능성을 명확하게 인식하지 못하였으며, 무리수의 다양한 표현 중에서 기호 표현에 집중 경향을 나타냈고, 다른 표현들을 상대적으로 간과하는 현상을 나타내었다. 특히 규칙성이 있는 비순환 무한소수에 대한 제한된 이해와 무한소수에 대한 일관성 있는 이해의 결여를 확인할 수 있었다. 또한 기호 표현 $\sqrt{5}$에 비해 ${\pi}$를 다른 표현으로 번역하는데 더 큰 어려움을 나타냈으며, ${\pi}$를 번역하는 과정에서 가무한의 관점이 드러나기도 하였다. 이상의 연구결과를 종합하여 무리수 개념 지도는 무리수 정의와 표현의 관계, 다양한 무리수 표현의 이해, 무리수 표현간의 번역에 중점을 두어 지도되어야 함을 주장하였다.

순환소수 지도에서의 문제점과 해결방안 (Problems and Alternatives on Teaching for Repeating Decimal)

  • 이강섭;엄규연
    • 대한수학교육학회지:학교수학
    • /
    • 제9권1호
    • /
    • pp.1-12
    • /
    • 2007
  • 유리수의 개념에 대한 이해를 확립하고 실수로의 확장 가능성을 탐색하는 수학 8단계 학습에서 제시되는 '유리수와 순환소수와의 관계'에 대하여 교과서 별로 서로 다른 내용을 담고 있어 많은 학습자들이 혼란을 겪고 있다. 이 연구에서는 순환 소수에 대한 교육과정, 교과서, 평가문항을 분석하여 순환소수 지도에서의 문제점을 찾고 그에 따른 바람직한 해결방안을 모색하였다. 대안으로서, '0을 순환마디로 사용할 것'과 유한소수의 정의를 '0이 순환하는 소수'로 할 것을 제안하였다. 이를 바탕으로 '모든 유리수는 순환소수로 나타낼 수 있으며, 모든 순환소수는 유리수로 나타낼 수 있다'는 관계의 지도를 해결방안으로 삼았다.

  • PDF

유리수와 무리수의 합집합을 넘어서: 실수가 자명하다는 착각으로부터 어떻게 벗어날 수 있는가? (Beyond the Union of Rational and Irrational Numbers: How Pre-Service Teachers Can Break the Illusion of Transparency about Real Numbers?)

  • 이지현
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제25권3호
    • /
    • pp.263-279
    • /
    • 2015
  • 유리수에서 실수로의 확장 혹은 무리수의 존재성을 수학적으로 정당화하기 위해서는 완비성 공리가 필요하므로, 실수의 도입은 학교수학에서 가장 가르치기 어려운 주제 중 하나이다. 이 연구에서는 실수를 '유리수와 무리수의 합집합'으로 정의하는 학교수학의 교수학적 변환이 어떠한 교수학적 공백을 남겨놓을 수 있는지를 살펴보고, 유리수에서 실수로의 수 체계 확장의 이유, 임의의 비순환 무한소수의 존재 이유 등에 대한 예비교사들의 설명을 분석하여 대학수학의 학습에도 불구하고 예비교사들의 실수에 대한 피상적인 이해를 구체적으로 확인하였다. 교수학적 공백을 인식하고 학교수학과 대학수학을 연결함으로서, 예비교사들이 실수 개념이 자명하다는 착각으로부터 어떻게 벗어날 수 있었는지를 논의하였다.

소수 개념의 교수학적 분석 (A Didactical Analysis of the Decimal fraction Concept)

  • 우정호;변희현
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제15권3호
    • /
    • pp.287-313
    • /
    • 2005
  • 소수는 십진기수법의 완성을 통해 실수의 표준기호화를 가능하게 하며 실수의 본질을 이해하는데 핵심적 역할을 하는 기본 개념이다. 우리나라 학교수학에서는 소수 개념에 대하여 분수의 다른 이름이라는 측면이 강조되고 그 밖의 중요한 여러 측면이 소홀히 지도된 채 성급한 알고리즘화가 시도되고 있다. 그 결과 학생들은 소수 개념을 적절히 이해하지 못한 채 형식적인 계산 조작의 대상으로 파악하며, 이는 무한소수인 실수 개념 이해의 심각한 장애 요인으로 작용한다는 문제점이 제기된다. 이에 본 논문에서는 학교수학의 주요 개념의 하나인 소수 개념에 대하여 그 교수학적 분석을 시도하여 그 주요한 교육적 문제점의 근원을 드러내고 그 개선방안을 제시하였다.

  • PDF