• Title/Summary/Keyword: 기하학적 해석

Search Result 1,138, Processing Time 0.026 seconds

An Equivalent Multi-Phase Similitude Law for Pseudodynamic Test on Small-scale RC Models (RC 축소모형의 유사동적실험을 위한 Equivalent Multi-Phase Similitude Law)

  • ;;;Guo, Xun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.101-108
    • /
    • 2003
  • Small-scale models have been frequently used for experimental evaluation of seismic performance because of limited testing facilities and economic reasons. However, there are not enough studies on similitude law for analogizing prototype structures accurately with small-scale models, although conventional similitude law based on geometry is not well consistent in the inelastic seismic behavior. When fabricating prototype and small-scale model of reinforced concrete structures by using the same material. added mass is demanded from a volumetric change and scale factor could be limited due to size of aggregate. Therefore, it is desirable that different material is used for small-scale models. Thus, a modified similitude law could be derived depending on geometric scale factor and equivalent modulus ratio. In this study, compressive strength tests are conducted to analyze equivalent modulus ratio of micro-concrete to normal-concrete. Equivalent modulus ratios are divided into multi phases, which are based on ultimate strain level. Therefore, an algorithm adaptable to the pseudodynamic test. considering equivalent multi-phase similitude law based on seismic damage levels, is developed. In addition, prior to the experiment. it is verified numerically if the algorithm is applicable to the pseudodynamic test.

FEM Electrical Resistivity Modeling in Cylindrical Coordinates (원통 좌표계에서의 전기비저항 유한요소 모델링)

  • Choi Wonseok;Kim Jung-Ho;Park KwonGyu;Kim Hak-Soo;Suh Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.3
    • /
    • pp.206-216
    • /
    • 2002
  • The finite element method (FEM), a powerful numerical modeling tool for solving various engineering problems, is frequently applied to three-dimensional (3-D) modeling thanks to its capability of discretizing and simulating the shape of model with finite number of elements. Considering the accuracy of the solution and computing time in modeling of engineering problems, it is preferable to construct physical continuity and simplify mesh system. Although there exist systematic mesh generation systems for arbitrary shaped model, it is hard to model a simple cylinder in terms of 3-D coordinate system especially in the vicinity of the central axis. In this study I adopt cylindrical coordinate system for modeling the 3-D model space and define the origin of the coordinates with mathematically clear coordinate transformation. Since we can simulate the whole space with hexahedral elements, the cylindrical coordinate system is effective in handling the 3-D model structure. The 3-D do resistivity modeling scheme developed in this study provides basie principle for borehole-to-surface resistivity survey, which can be a useful tool for the application to environmental problem.

A Study on Blasting Method for the Smallest of the Scour Depth after Pier Construction (교각의 세굴심도 최소화를 위한 발파공법 연구)

  • 김가현;김종주;안명석
    • Explosives and Blasting
    • /
    • v.21 no.3
    • /
    • pp.23-35
    • /
    • 2003
  • An analytical diffusion model for flood routing with backwater effects and lateral flows is developed. The basic diffusion equation is linearized about an average depth of (H + h), and is solved using the boundary conditons which take into account the effects of backwater and lateral flows. Scouring phenomenon around pier which affects on the support function of pier and the stabilization if river bed is a complex problem depending on flow properties and river bed state as well as pier geometry. therefore, there is no uniting theory at present which would enable the designer to estimate, with confidence, the depth of scour at bridge piers. The various methods used in erosion control are collectively called upstream engineering, HEC-RAS Model, underwater blasting. They consist of reforestation, check-dam construction, planting of burned-over areas, contour plowing and regulation of crop and grazing practices. Also included are measures for proper treatment of high embankments and cuts and stabilization of streambanks by planting or by revetment construction. One phase of reforestation that may be applied near a reservoir is planting of vegetation screens. Such screens, planted on the flats adjacent to the normal stream channel at the head of a reservoir, reduce the velocity of silt-laden storm inflows that inundate these areas. This stilling action causes extensive deposition to occur before the silt reaches the main cavity of the reservoir.

Proposal of Connection Details for a Double Split Tee Connection Without a Shear tap (전단탭이 없는 상·하부 스플릿 티 접합부의 접합부상세 제안)

  • Yang, Jae Guen;Lee, Hyung Dong;Kim, Yong Boem;Pae, Da Sol
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.5
    • /
    • pp.423-433
    • /
    • 2015
  • A double split tee connection, which is a beam-column moment connection, shows different behavioral characteristics under the influences of the thickness of a T-stub flange, a high-strength bolt gauge distance, and the number and diameter of a high-strength bolt. A double split tee connection is idealized and designed that a flexural moment normally acting on connections can be resisted by a T-stub and a shear force by a shear tap. However, where a double split tee connection is adopted to a low-and medium-rise steel structure, a small-sized beam member can be adopted. Then, a shear tab may not be bolted to the web of a beam. This study was conducted to suggest the details of a connection to secure that a double split tee connection with a geometric shape has a sufficient capacity to resist a shear force. To verify this, this study was conducted to make a three-dimensional nonlinear finite element analysis on a double split tee connection.

Radiation Shielding Analysis on The Spent Fuel Storage Facility for the Extended Fuel Cycle (장주기(長週期) 핵연료(核燃料) 저장시설(貯藏施設)에서의 방사선차폐해석(放射線遮蔽解析))

  • Lee, Tae-Young;Ha, Chung-Woo;Yook, Chong-Chul
    • Journal of Radiation Protection and Research
    • /
    • v.9 no.2
    • /
    • pp.90-96
    • /
    • 1984
  • Estimated dose rates in spent fuel pool storage with the extended fuel cycle core management were reviewed and compared with design limit after calculation with the aid of DLC-23/CASK(22 n, 18 g) nuclear data and ANISN code. Radioactivity and gamma spectrum within spent fuel assemblies were calculated with ORIGEN code by extended fuel cycle model. In the calculation of dose rate, the fuel pool geometry was assumed to be infinite slab. Also, composition materials and radiation source within assemblies which are being stored in pool storage were assumed to be uniformly distributed throughout all the assemblies. As a result of culculation of dose rate from stored assemblies and waterborne radionuclides in pool water, the calculated dose rates appear to be lower than design basis limit under normal condition as well as abnormal condition.

  • PDF

Structural Optimization for Improvement of Thermal Conductivity of Woven Fabric Composites (열전도도 향상을 위한 직물섬유 복합재의 최적구조 설계)

  • Kim, Myungsoo;Sung, Dae Han;Park, Young-Bin;Park, Kiwon
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.26-34
    • /
    • 2017
  • This research presents studies on an improved method to predict the thermal conductivity of woven fabric composites, the effects of geometric structures of woven fabric composites on thermal conductivity, and structural optimization to improve the thermal conductivity using a genetic algorithm. The geometric structures of woven fabric composites were constructed numerically using the information generated on waviness, thickness, and width of fill and warp tows. Thermal conductivities of the composites were obtained using a thermal-electrical analogy. In the genetic algorithm, the chromosome string consisted of thickness and width of the fill and warp tows, and the objective function was the maximum thermal conductivity of woven fabric composites. The results confirmed that an improved method to predict the thermal conductivity was built successfully, and the inter-tow gap effect on the composite's thermal conductivity was analyzed suggesting that thermal conductivity of woven fabric composites was reduced as the gap between tows increased. For structural design, optimized structures for improving the thermal conductivity were analyzed and proposed. Generally, axial thermal conductivity of the fiber tow contributed more to thermal conductivity of woven fabric composites than transverse thermal conductivity of the tows.

Analysis of Discharge Characteristics for a Control Gate in a River (하도내 조절수문 방류특성 해석)

  • Son, Kwang Ik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4B
    • /
    • pp.309-314
    • /
    • 2011
  • Analysis of discharge characteristics through control gates at river crossing structures is important for an effective water level control and water resources management. In recent years, many river control structures in four major rivers are under construction but only few researches on discharge characteristics at control gates could be found in Korea. The discharge characteristics depend on both shape of control gates and the effects of downstream water-depth. In this research, classification index for discharge patterns (free weir, submerged weir, free orifice, submerged orifice) through a control gate were reviewed with $h_g/h_1$, $h_3/h_g$, and $h_3/h_1$. Classification criteria of discharge patterns were also suggested. Representative discharge estimation equations for each discharge patterns were adopted and discharge coefficients were developed from a hydraulic model for a specific control gate which will be constructed in Nakdong river. Reliability of the derived discharge equation and coefficients were confirmed by comparisons between the real discharge in a model and the predicted discharge from the results of this research.

Analysis for Practical use as KOMPSAT-2 Imagery for Product of Geo-Spatial Information (지형공간정보 생성을 위한 KOPMSAT-2 영상의 활용성 분석)

  • Lee, Hyun-Jik;You, Ji-Ho;Koh, Young-Chang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.1
    • /
    • pp.21-35
    • /
    • 2009
  • KOMPSAT-2 is the seventh high-resolution image satellite in the world that provides both 1m-grade panchromatic images of the GSD and 4m-grade multispectral images of the GSD. It's anticipated to be used across many different areas including mapping, territory monitoring and environmental watch. However, due to the complexity and security concern involved with the use of the MSC, the use of KOMPSAT-2 images are limited in terms of geometric images, such as satellite orbits and detailed mapping information. Therefore, this study aims to produce DEM and orthoimage by using the stereo images of KOMPSAT-2, and to explore the applicability of geo-spatial information with KOMPSAT -2. Orientation interpretations were essential for the production of DEM and orthoimage using KOMPSAT-2 images. In the study, they are performed by utilizing both RPC and GCP. In this study, the orientation interpretations are followed by the generation of DEM and orthoimage, and the analysis of their accuracy based on a 1:5,000 digital map. The accuracy analysis of DEM is performed and the results indicate that their altitudes are, in general, higher than those obtained from the digital map. The altitude discrepancies on plains, hills and mountains are calculated as 1.8m, 7.2m, and 11.9m, respectively. In this study, the mean differences between horizontal position between the orthoimage data and the digital map data are found to be ${\pm}3.081m$, which is in the range of ${\pm}3.5m$, within the permitted limit of a 1:5,000 digital map. KOMPSAT-2 images are used to produce DEM and orthoimage in this research. The results suggest that DEM can be adequately used to produce digital maps under 1:5,000 scale.

  • PDF

Establishment of Optimum Photo Condition for the Accurate Monitoring of Cultural Assets and Ground Facilities using Terrestrial Photographs (문화재와 지상시설물의 정밀점검을 위한 지상사진의 최적촬영조건 설정)

  • 손덕재
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.12 no.1
    • /
    • pp.1-13
    • /
    • 1994
  • The terrestrial phetogrammetry has the relative convenience of selecting the site of photo station in contrast with the aerial photogrammetry, and the flexibility in accuracy prediction of object point positioning. So it has the advantage in designing optimum photo taking system which can fulfill the required accuracy. For the convergent photos which are frequently used for the monitoring of cultural assets and ground facilities, almost all of the traditional studies for the optimum photo condition, both in theoretical or experimental, are basically depend on the symmetrical configuration at the normal direction to the center of the object. However, in many cases the surroundings of the object do not allow the normal photo direction or sufficient convergent angle, even more the object features are not always be seen as one panel like planar. In this paper, the accuracy variation of convergent photos for the multi-planar objects, which are composed by some orthogonal planes, are investigated to establish the optimum photo condition. The results of the accuracy analysis for the photo direction, convergent angle, as well as the object feature are expected to be utilized in system design of geometric configuration of convergent photos, which are adequate for the accurate monitoring of the objects, such as culural assets, facilities, precision instruments, deformation surveying, etc.

  • PDF

Mössbauer Studies of Changed Interaction on Cr Ions in Chromite (Chromite 물질의 자기상호작용에 관한 뫼스바우어 분광연구)

  • Choi, Kang-Ryong;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.1
    • /
    • pp.47-50
    • /
    • 2007
  • [ $ZnCr_2O_4$ ] shows geometrically frustrated magnet. Recently, $CoCr_2O_4$ has been investigated for multiferroic property and dielectric anomalies by spin-current model. Polycrystalline $CoCr_2O_4$ and $CoCrFeO_4$ compounds was prepared by wet-chemical process. Crystallographic and magnetic properties of $CoCr_2O_4$ and $CoCrFeO_4$ were investigate by using the x-ray diffractometer(XRD), vibrating sample magnetometer(VSM), superconducting quantum interference device magnetometer(SQUID), and $M\"{o}ssbauer$ spectroscopy. The crystal structure was found to be single-phase cubic spinel with space group of Fd3m. The lattice constants of $CoCr_2O_4$ and $CoCrFeO_4$ $a_0$ were determined to be 8.340 and 8.377 ${\AA}$, respectively. The ferrimagnetic transition temperature for the both samples were observed at 97 K and 320 K. The $M\"{o}ssbauer$ absorption spectra at 4.2 K show that the well developed two sextets are superposed with small difference of hyperfine field($H_{hf1}=507\;and\;H_{hf2}=492\;kOe$). Isomer shift values($\delta$) of the two sextets are found to be 0.33 and 0.34 mm/s relative to the Fe metal, respectively, which are consistent with the high spin $Fe^{3+}$ charge state.