DOI QR코드

DOI QR Code

Proposal of Connection Details for a Double Split Tee Connection Without a Shear tap

전단탭이 없는 상·하부 스플릿 티 접합부의 접합부상세 제안

  • Yang, Jae Guen (Department of Architectural Engineering, Inha University) ;
  • Lee, Hyung Dong (Department of Architectural Engineering, Inha University) ;
  • Kim, Yong Boem (Department of Architectural Engineering, Inha University) ;
  • Pae, Da Sol (Department of Architectural Engineering, Inha University)
  • Received : 2015.06.04
  • Accepted : 2015.09.19
  • Published : 2015.10.27

Abstract

A double split tee connection, which is a beam-column moment connection, shows different behavioral characteristics under the influences of the thickness of a T-stub flange, a high-strength bolt gauge distance, and the number and diameter of a high-strength bolt. A double split tee connection is idealized and designed that a flexural moment normally acting on connections can be resisted by a T-stub and a shear force by a shear tap. However, where a double split tee connection is adopted to a low-and medium-rise steel structure, a small-sized beam member can be adopted. Then, a shear tab may not be bolted to the web of a beam. This study was conducted to suggest the details of a connection to secure that a double split tee connection with a geometric shape has a sufficient capacity to resist a shear force. To verify this, this study was conducted to make a three-dimensional nonlinear finite element analysis on a double split tee connection.

상 하부 스플릿 티 접합부는 보-기둥 모멘트 접합부로써 T-stub 플랜지의 두께, 고장력볼트의 게이지 거리, 고장력볼트의 개수 및 직경 등의 영향에 따라서 상이한 거동특성을 나타낸다. 상 하부 스플릿 티 접합부는 일반적으로 접합부에 작용하는 휨모멘트는 T-stub이 지지하고 전단력은 전단탭이 지지하는 것으로 이상화되어 설계되고 있다. 그러나 중 저층 규모의 강구조물에 상 하부 스플릿 티 접합부가 적용되는 경우, 작은 규격의 보 부재가 적용될 수 있기 때문에 보 웨브에 전단탭을 설치하지 못하는 경우가 발생할 수 있다. 이 연구는 이와 같이 보 웨브에 전단탭을 설치할 수 없는 기하학적 형상을 갖는 상 하부 스플릿 티 접합부가 충분한 전단력 지지능력을 갖도록 하는 접합부 상세를 제안하기 위하여 진행하였다. 이를 위하여 상 하부 스플릿 티 접합부에 대한 3차원 비선형 유한요소해석을 수행하였다.

Keywords

References

  1. Kim, H.D., Yang, J.G., Lee, J.Y., and Lee, H.D. (2014) Evaluation of the Initial Rotational Stiffness of a Double Split Tee Connection, International Journal of Steel Structures, KSSC, Vol.26, No.2, pp.133-142.
  2. Yang, J.G., Kim, J.W., and Kim, Y. (2012) Design Formula for the Flexural Strength of a Double Split Tee Connection, International Journal of Steel Structures, KSSC, Vol.24, No.5, pp.511-520.
  3. Yang, J.G., Kim, Y., and Park, J.H. (2012) Prediction Model for the Initial Rotational Stiffness of a Double Split T Connection, Journal of Korean Society of Steel Structures, KSSC, Vol.24, No.3, pp.279-287 (in Korean).
  4. Faella, C., Piluso, V., and Rizzano, G. (2000) Structural steel semi-rigid connections: Theory, design, and software, CRC Press.
  5. Kulak, G.L., Fisher, J.W., and Struik, J.H.A. (2001) Guide To Design Criteria For Bolted and Riveted Joints 2nd Ed., American Institute of Steel Construction, Wiley, New York.
  6. Yang, J.G., Park, J.H., Choi J.H., and Kim, S.M. (2011) Characteristic Behavior of a T-stub Connection Under Shear, Including the Effects of Prying Action and Bolt Pretension, The 6th International Symposium on Steel Structures, KSSC, Korea, pp.1086-1092.
  7. Yang, J.G., Kim, H.K., and Park, J.H. (2012) Analytical Models for the Initial Axial Tensile Stiffness and Ultimate Tensile Load of a T-Stub, Including the Effects of Prying Action, International Journal of Steel Structures, KSSC, Vol.24, No.3, pp.279-287.
  8. FEMA-350 (2000) Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings, prepared by the SAC Joint Venture for the Federal Emergency Management Agency, Washington DC.
  9. Astaneh, A. (1985) Procedure For Design and Analysis of Hanger-Type Connections, Engineering Journal, AISC, Vol.22, No.2, pp.63-66.
  10. Piluso, V., Faella, C., and Rizzano, G. (2001) Ultimate Behavior of Bolted T-stubs. I : Theoretical Model, Journal of Structural Engineering, ASCE, Vol.127, No.6, pp. 686-693. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:6(686)
  11. Piluso, V., Faella, C., and Rizzano, G. (2001) Ultimate Behavior of Bolted T-stubs. II : Model Validation, Journal of Structural Engineering, ASCE, Vol.127, No.6, pp. 694-704. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:6(694)
  12. Swanson, J.A. (2002) Ultimate Strength Prying Models for Bolted T-stub Connections, Engineering Journal, AISC, Vol.39, No.3, pp.136-147.
  13. Swanson, J.A., Kokan, D.S., and Leon, R.T. (2002) Advanced Finite Element Modeling of Bolted T-stub Connection Components, Journal of Constructional Steel Research, Elsevier, Vol.58, No.5, pp.1015-1031. https://doi.org/10.1016/S0143-974X(01)00098-0
  14. Thornton, W.A. (1985) Prying Action: A general treatment, Journal of Environmental Engineering, AISC, Vol. 22, pp.67-75.
  15. Girao Coelho, A.M., Simoes da Silva, L., and Bijlaard, F.S.K. (2004) Characterization of The Nonlinear Behaviour of Single Bolted T-stub Connections, Proceedings of The Fifth International Workshop on Connections : Connections in Steel Structures, Behavior, Strength and Design, AISC-ECCS, Amsterdam, pp.53-120.
  16. Girao Coelho, A.M., Simoes da Silva, L., and Bijlaard, F.S.K. (2006) Finite-Element Modeling of the Nonlinear Behavior of Bolted T-stub Connections, Journal of Structural Engineering, ASCE, Vol.132, No.6, pp.918-928. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:6(918)
  17. Lemonis, M.E. and Gantes, C.J. (2006) Incremental Modeling of T-Stub Connections, Journal of Mechanics of Materials and Structures, Vol.1, No.7, pp.1135-1159. https://doi.org/10.2140/jomms.2006.1.1135
  18. Stankiewicz, B. (2002) Experimental Tests of T-stub Joints and Refined Finite Element Method Computer Model, EUROSTEEL 2002, Coimbra, Portugal.
  19. Kim, H.D., Yang, J.G., Lee, J.Y., and Lee, H.D. (2014) Evaluation of the Initial Rotational Stiffness of a Double Split Tee Connection, Including the Effects of Prying Action, International Journal of Steel Structures, KSSC, Vol.26, No.2, pp.133-142.

Cited by

  1. Experimental Study on the Seismic Performance of Steel H-Shaped Beam-to-Column Connections vol.20, pp.5, 2020, https://doi.org/10.9798/kosham.2020.20.5.1