DOI QR코드

DOI QR Code

Analysis of Discharge Characteristics for a Control Gate in a River

하도내 조절수문 방류특성 해석

  • 손광익 (영남대학교 건설시스템공학과)
  • Received : 2010.06.22
  • Accepted : 2011.01.07
  • Published : 2011.08.31

Abstract

Analysis of discharge characteristics through control gates at river crossing structures is important for an effective water level control and water resources management. In recent years, many river control structures in four major rivers are under construction but only few researches on discharge characteristics at control gates could be found in Korea. The discharge characteristics depend on both shape of control gates and the effects of downstream water-depth. In this research, classification index for discharge patterns (free weir, submerged weir, free orifice, submerged orifice) through a control gate were reviewed with $h_g/h_1$, $h_3/h_g$, and $h_3/h_1$. Classification criteria of discharge patterns were also suggested. Representative discharge estimation equations for each discharge patterns were adopted and discharge coefficients were developed from a hydraulic model for a specific control gate which will be constructed in Nakdong river. Reliability of the derived discharge equation and coefficients were confirmed by comparisons between the real discharge in a model and the predicted discharge from the results of this research.

하류수위의 영향을 받는 하도 내 조절수문의 경우 조절수문의 기하학적 형상은 물론 상 하류 수위에 따라 방류특성이 변화하므로 효율적 수위조절 및 수자원 관리를 위해서는 정확한 개도별 방류능 산정이 요구된다. 최근 4대강 살리기 사업으로 인하여 보의 건설과 함께 조절수문이 많이 설치되고 있으나 국내에서는 조절수문 개도에 따른 방류형태 분류기준 및 방류능 산정에 대한 연구를 찾아보기 힘든 실정이다. 따라서 본 연구에서는 특정 조절수문에 대한 수리모형실험을 통하여 방류형태(자유위어, 수중위어, 자유오리피스, 수중오리피스)를 판단할 수 있는 주요 인자를 찾고 분류기준을 검토하여 조절수문 운영을 위한 기초자료를 제시하였다. 게이트 개도높이와 상류수심의 비($h_g/h_1$), 하류수심과 게이트 개도높이의 비($h_3/h_g$)와 하류수심과 상류수심의 비($h_3/h_1$)를 하도 내 조절수문의 개도 및 상 하류 수위에 따른 방류형태를 판단할 수 있는 주요 인자로 선정하고 방류형태 분류기준 값을 제안하였다. 또한 본 연구에서 유도된 각 방류형태별 유출계수 및 방류능 산정공식으로 예측된 유량과 모형에서의 실측유량을 비교하여 연구결과의 적용성을 검증하였다.

Keywords

References

  1. Alminagorta, O. and Merkley, G.P. (2009) Transitional flow between orifice and nonorifice regimes at a rectangular sluice gate. Journal of Irrigation and Drainage Engineering, ASCE, MAY/ JUNE, pp. 382-387.
  2. Ansar, M. and Gonzalez-Castro, J.A. (2003) Submerged weir flow at prototype gated spillways. World Water & Environmental Resources Congress 2003 and Related Symposia, Proceedings of the Congress, June 23.26, 2003, Philadelphia, Pennsylvania
  3. Brater, E.F., King, H.W, Lindell, J.E., and Wei, C.Y. (1996) Handbook of Hydraulics, 7th Edition, MeGraw-Hill.
  4. Collins, D.L. (1976). Discharge computations at river control structures. Journal of Hydraulics, HY7, pp. 845-863.
  5. Fisk, G.G. (1988). Discharge rating for control structures at McHenry dam on the Fox river, Report 87-4226, USGS, Water Resource Investigations, Illinois.
  6. Lin, C.H., Yen, J.F., and Tsai, C.T. (2002) Influence of sluice gate contraction coefficient on distinguishing condition. Journal of Irrigation and Drainage Engineering, ASCE, Vol. 124, No. 4, pp. 249-252.
  7. Tillis, G.M. and Swain, E.D. (1998) Determining Discharge-Coefficient Ratings for Selected Coastal Control Structures in Broward and Palm Beach Counties, Report 98-4007, USGS, Water-Resources Investigations, Florida.
  8. Wahl, T.L. (2004) Issues and problems with calibration of canal gates. Proc., World Water & Environmental Resources Congress, Salt Lake City.