• Title/Summary/Keyword: 기하증명

Search Result 150, Processing Time 0.324 seconds

THE PROCESS OF NEGOTIATION OF PROOFS ACCEPTABLE TO MATHEMATICS CLASSROOM (수학교실에서 수용 가능한 증명의 상호 교섭 과정)

  • Kim, Dong-Won
    • Journal of Educational Research in Mathematics
    • /
    • v.18 no.4
    • /
    • pp.455-467
    • /
    • 2008
  • We need to reflect the establishment of meaning and level of 'proof and argumentation in middle school mathematics'. It should be considered as human activity through communication in community. Thus, we should design instruction from this standpoint. From this point of view, we had been operated 'Geometry Inquiry Class' aimed at middle school students in eighth grade for two years to improve current geometry class in middle school. In this study, we will observe how individual students' original proof schemes are developed and accepted to the class through the process of mutual negotiation between the teacher and students. The episode with four phases begins with the initial proof schemes students have offered. Through the negotiation of class participants, it gives birth to the proof scheme unique to the current geometry classroom. Why do we pay attention to the process? It is because we think that the value of this type of instruction lies in the process of communication and mutual understanding and mutual reference, not in the completeness of the final product. This is the very appropriate proof in the middle school mathematics classroom.

  • PDF

A Study on the Historic-Genetic Principle of Mathematics Education(1) - A Historic-Genetic Approach to Teaching the Meaning of Proof (역사발생적 수학교육 원리에 대한 연구(1) - 증명의 의미 지도의 역사발생적 전개)

  • 우정호;박미애;권석일
    • School Mathematics
    • /
    • v.5 no.4
    • /
    • pp.401-420
    • /
    • 2003
  • We have many problems in the teaching and learning of proof, especially in the demonstrative geometry of middle school mathematics introducing the proof for the first time. Above all, it is the serious problem that many students do not understand the meaning of proof. In this paper we intend to show that teaching the meaning of proof in terms of historic-genetic approach will be a method to improve the way of teaching proof. We investigate the development of proof which goes through three stages such as experimental, intuitional, and scientific stage as well as the development of geometry up to the completion of Euclid's Elements as Bran-ford set out, and analyze the teaching process for the purpose of looking for the way of improving the way of teaching proof through the historic-genetic approach. We conducted lessons about the angle-sum property of triangle in accordance with these three stages to the students of seventh grade. We show that the students will understand the meaning of proof meaningfully and properly through the historic-genetic approach.

  • PDF

내가 중학교 기하 영역의 교사용 지도서를 다시 쓴다면?

  • Choi, Su-Il;Kim, Dong-Won
    • Proceedings of the Korea Society of Mathematical Education Conference
    • /
    • 2008.05a
    • /
    • pp.17-28
    • /
    • 2008
  • 이 논문은 중학교 기하 영역의 수업에 대한 학생들의 성취도가 낮은 것을 관찰하고, 그에 대한 고민으로 교육과정을 분석하고, 수학교육의 질적 접근을 위한 교수 실험을 통해 실제 중학교 과정에서 운용되는 논증기하 교육의 문제점과 그 대안을 탐색하고자 하였다. 본 연구에서는 교사가 반드시 갖춰야 할 지식으로 Shulman(1986)이 제시한 교과 내용 지식과 교수학적 내용 지식, 그리고 교육과정 관련 지식을 받아들였으며, 중학교 기하 영역에서 이런 지식을 갖추기 위해 교사가 폭넓은 고민을 하여 수업의 개선점을 찾는 과정을 보여주고 있다. 연구를 통해서 학생들에게 명제를 지도할 때 주의할 점과 학습자에게 증명을 하도록 제시하는 방법상의 문제점, 그리고 이등변삼각형의 지도에서의 그 증명이 갖는 의미를 잘 이해하여 학생들에 증명 학습에 진정한 도움이 될 수 있는 방향을 탐색하였다. 그리고 절차만을 학습시키는 현행 작도 수업을 개선하기 위한 여러 시도와 등변사다리꼴의 학습에서와 같이 학생들이 수학 용어를 되돌아보는 수업이 필요성을 탐색하여, 많은 교수 실험을 통한 교육과정의 바람직한 개정을 제안하였다.

  • PDF

Seventh Graders' Proof Schemes and Their Characteristics in Geometric Tasks (기하증명과제에서 나타나는 중학교 1학년 학생들의 증명스키마와 그 특징)

  • Byun, Gyu Mi;Chang, Kyung Yoon
    • Journal of Educational Research in Mathematics
    • /
    • v.27 no.2
    • /
    • pp.191-205
    • /
    • 2017
  • The purpose of this study is to investigate the types and characteristics of the Seventh Graders' proofs. Harel, & Sowder's proof schemes were used to analyze the subjects' responses. As a result of the study, there was a difference in the type of proof schemes used by the students depending on the academic achievement level. While the proportion of students using a transformative proof scheme decreased from the top to the bottom, the proportion of students using inductive (measure) proof scheme increased. In addition, features of each type of proof schemes were shown, such as using informal codes in the proof process, and dividing a given picture into a specific ratio in the problem. Based on this, we extracted four meaningful conclusions and discussed implications for proof teaching and learning.

Role of Symbol and Formation of Intuition by the Mediation of Symbols in Geometric Proof (기하 증명에서 기호의 역할과 기호 중재에 의한 직관의 형성)

  • Kim, Hee;Kim, Sun-Hee
    • Journal of Educational Research in Mathematics
    • /
    • v.20 no.4
    • /
    • pp.511-528
    • /
    • 2010
  • Students' intuition in formal proof should be expressed as symbols according to the deductive process. The symbol will play a role of the mediation between the intuition and the formal proof. This study examined the evolution process of intuition mediated by the symbol in geometry proof. According to the results first, symbol took the great roles when students had the non-formed intuition for the proposition. The signification of symbols could explain even the proof process of the proposition with the non-expectable intuition. And when students proved it by symbols, not by figure nor words, they could evolute the conclusive intuition about the proposition.

  • PDF

Cabri II 를 이용한 증명 교수학습 방법에 관한 연구

  • Ryu, Hui-Chan;Jo, Wan-Yeong
    • Communications of Mathematical Education
    • /
    • v.8
    • /
    • pp.17-32
    • /
    • 1999
  • 본 논문의 목적은 Cabri II 를 이용하여 형식적이고 연역적인 증명수업 방법의 대안을 찾는 데 있다. 형식적인 증명을 하기 전에 탐구와 추측을 통한 발견과 그 결과에 대한 비형식적인 증명 활동을 강조한다. 역동적인 기하소프트웨어인 Cabri II 는 작도가 편리하고 다양한 예를 제공하여 추측과 탐구 그리고 그 결과의 확인을 위한 풍부한 환경을 제공할 수 있으며, 끌기 기능을 이용한 삼각형의 변화과정에서 관찰할 수 있는 불변의 성질이 형식적인 증명에 중요한 역할을 한다. 또한 도형에 기호를 붙이는 활동은 형식적인 증명을 어렵게 만드는 요인 중의 하나인 명제나 정리의 기호적 표현을 보다 자연스럽게 할 수 있게 해 준다. 그러나, 학생들이 증명은 더 이상 필요 없으며, 실험을 통한 확인만으로도 추측의 정당성을 보장받을 수 있다는 그릇된 ·인식을 심어줄 수도 있다. 따라서 모든 경우에 성립하는 지를 실험과 실측으로 확인할 수는 없다는 점을 강조하여 학생들에게 형식적인 증명의 중요성과 필요성을 인식시킬 필요가 있다. 본 연구에 대한 다음과 같은 후속연구가 필요하다. 첫째, Cabri II 를 이용한 증명 수업이 학생들의 증명 수행 능력 또는 증명에 대한 이해에 어떤 영향을 끼치는지 특히, van Hiele의 기하학습 수준이론에 어떻게 작용하는 지를 연구할 필요가 있다. 둘째, 본 연구에서 제시한 Cabri II 를 이용한 증명 교수학습 방법에 대한 구체적인 사례연구가 요구되며, 특히 탐구, 추측을 통한 비형식적인 중명에서 형식적 증명으로의 전이 과정에서 나타날 수 있는 학생들의 반응에 대한 조사연구가 필요하다.

  • PDF

A Research on the Teaching and Learning of Geometry Based on the Lakatos Proofs and Refutation Method (Lakatos의 증명과 반박 방법에 따른 기하 교수.학습 상황 분석 연구)

  • Park, Kyung-Mee
    • School Mathematics
    • /
    • v.11 no.1
    • /
    • pp.55-70
    • /
    • 2009
  • The purpose of this study is to implement Lakatos method in the teaching and learning of geometry for middle school students. In his landmark book , Lakatos suggested the following instructional approach: an initial conjecture was produced, attempts were made to prove the conjecture, the proofs were repeatedly refuted by counterexamples, and finally more improved conjectures and refined proofs were suggested. In the study, students were selected from the high achieving students who participated in the special mathematics and science program offered by the city council of Seoul. The students were given a contradictory geometric proposition, and expected to find the cause of the fallacy. The students successfully identified the fallacy following the Lakatos method. In this process they also set up a primitive conjecture and this conjecture was justified by the proof and refutation method. Some implications were drawn from the result of the study.

  • PDF

An Analysis of Justification Process in the Proofs by Mathematically Gifted Elementary Students (수학 영재 교육 대상 학생의 기하 인지 수준과 증명 정당화 특성 분석)

  • Kim, Ji-Young;Park, Man-Goo
    • Education of Primary School Mathematics
    • /
    • v.14 no.1
    • /
    • pp.13-26
    • /
    • 2011
  • The purpose of this research is to analyze geometrical level and the justification process in the proofs of construction by mathematically gifted elementary students. Justification is one of crucial aspect in geometry learning. However, justification is considered as a difficult domain in geometry due to overemphasizing deductive justification. Therefore, researchers used construction with which the students could reveal their justification processes. We also investigated geometrical thought of the mathematically gifted students based on van Hieles's Theory. We analyzed intellectual of the justification process in geometric construction by the mathematically gifted students. 18 mathematically gifted students showed their justification processes when they were explaining their mathematical reasoning in construction. Also, students used the GSP program in some lessons and at home and tested students' geometric levels using the van Hieles's theory. However, we used pencil and paper worksheets for the analyses. The findings show that the levels of van Hieles's geometric thinking of the most gifted students were on from 2 to 3. In the process of justification, they used cut and paste strategies and also used concrete numbers and recalled the previous learning experience. Most of them did not show original ideas of justification during their proofs. We need to use a more sophisticative tasks and approaches so that we can lead gifted students to produce a more creative thinking.

Students' attitudes toward learning proofs and learning proofs with GSP (증명학습에 대한 학생들의 성향과 GSP를 활용한 증명학습)

  • Han, Hye-Suk;Shin, Hyun-Sung
    • Journal of the Korean School Mathematics Society
    • /
    • v.11 no.2
    • /
    • pp.299-314
    • /
    • 2008
  • The purposes of this study were to investigate what attitudes students have toward learning proofs and what difficulties they have in learning proofs, and to examine how the use of dynamic geometry software, the Geometer's Sketchpad, helps students' proof learning. The study involved 117 9th graders in 2 high schools. According to questionnaire data, over 50 percent of the total respondents(116) indicated negative attitudes toward learning proofs, on the other hand, only 16 percent of the total respondents indicated positive attitudes toward the learning. Memorizing and remembering many kinds of theorems, definitions, and postulates to use in proving statements was the most difficult part in learning proofs, which the largest proportion of the total respondents indicated. The study found that the use of the Geometer's Sketchpad played positive roles in developing students' understanding of proofs and stimulating students' interests in learning proofs.

  • PDF

컴퓨터를 통한 수학적 사고력 신장의 가능성 모색

  • Jo, Han-Hyeok;An, Jun-Hwa;U, Hye-Yeong
    • Communications of Mathematical Education
    • /
    • v.14
    • /
    • pp.197-215
    • /
    • 2001
  • 최근 수학적 사고력 연구가 구체적 수학내용에 기반한 활동과 조작에 대한 연구보다는 활동이나 조작을 통한 결과로 수학적 사고력에 접근하는 일회성 연구로 이루어지는 경향이 있다. 본고에서는 교육 내용을 선정하기 위해 학교수학에서 아동들이 어떤 수학적 사고를 하는데 장애을 겪는지에 주목하여, 이러한 장애를 극복하는 것을 통해 수학적 사고력의 신장을 생각해보고자 하였다. 이에 대수에서는 문자도입에 따른 추상적 상징의 수용과 이용부분에서, 기하에서는 논증기하의 증명도입과정에서 형식적, 연역적 사고 시작으로 아동이 수학적 사고에 어려움을 겪는다는 사살에 주목하였다. 특히 논증 기하의 연역적, 형식적 증명은 논리와 추론이 바탕이 되어야 한다. 그런데 논리와 추론은 고등학교 1학년과정 집합과 명제부분에 들어있어 아동은 논리와 추론에 대한 어떤 경험도, 교육도 받지 않은 상태에서 증명을 하게 된다. 이에 교육 내용으로 수학적 사고력을 신장을 위해 가장 필요한 내용이 논증 기하가 도입되기 이전에 초등학교 5,6학년 아동을 대상으로한 논리와 추론교육이라고 본다. 또한 교육 방법으로는 컴퓨터를 이용한 교육공학적 접근을 하고자 하였다. 교육공학적 접근이 적극 권장되는 교육적 현실과 정규교육과정에서 이를 받아들일만한 시간적 여유가 없음을 감안하여, 교과 내용과 연계된 컴퓨터 교육을 제안하는 바이다. 이에 논리 및 추론 교육은 컴퓨터 교육으로 초등학교의 특기적성 시간이나 정규수업 시간에 이용할 것을 제안한다. 논리와 추론교육을 위해 무엇을 어떻게 가르칠 것인가에 대한 답으로 논리와 추론교육에 적합한 수학적 내용으로 크게 이산수학과 중등 기하의 초등화하여 탐구하도록 하는 내용을, 교육 방법 측면에서는 논리와 추론 교육을 위한 LOGO 기반 마이크로월드를 설계, 이용하여 수학적 사고력을 신장시키고자 한다. 여기까지가 수학적 사고력을 위한 가능성을 모색한 것이라면 후속연구로 이러한 가능성을 실험연구로 검증하고자 한다.

  • PDF