기하증명과제에서 나타나는 중학교 1학년 학생들의 증명스키마와 그 특징

Seventh Graders' Proof Schemes and Their Characteristics in Geometric Tasks

  • 투고 : 2017.04.05
  • 심사 : 2017.05.08
  • 발행 : 2017.05.31

초록

본 연구는 서울의 C중학교 1학년 학생들이 기하 증명 문제를 해결하는 과정에서 보여주는 증명스키마 유형과 그 특징을 조사한 것이다. 자료 분석은 Harel, & Sowder의 증명스키마 유형에 기초하여 이루어졌다. 연구 결과, 학업성취수준에 따라 학생들이 사용하는 증명스키마 유형에 차이가 있었다. 상위권에서 하위권으로 갈수록 변형적 증명스키마를 사용하는 학생의 비율이 감소하였고 귀납적(측정) 증명스키마를 사용하는 학생의 비율은 증가하였다. 또한 증명과정에서 비형식적인 부호 사용하기, 문제에서 주어진 그림 특정 비율로 인식하기 등 각 증명스키마 유형마다 고유한 특징이 나타났다. 이를 바탕으로 4개의 의미 있는 결론을 추출하였고, 이것이 증명 교수 학습에 주는 시사점을 논의하였다.

The purpose of this study is to investigate the types and characteristics of the Seventh Graders' proofs. Harel, & Sowder's proof schemes were used to analyze the subjects' responses. As a result of the study, there was a difference in the type of proof schemes used by the students depending on the academic achievement level. While the proportion of students using a transformative proof scheme decreased from the top to the bottom, the proportion of students using inductive (measure) proof scheme increased. In addition, features of each type of proof schemes were shown, such as using informal codes in the proof process, and dividing a given picture into a specific ratio in the problem. Based on this, we extracted four meaningful conclusions and discussed implications for proof teaching and learning.

키워드

참고문헌

  1. 강정기, 노은환. (2013). 증명에서 연역 체계 이해에 관한 연구. A-수학교육, 52(4), 549-565.
  2. 교육부(2015). 수학과 교육과정. 교육부
  3. 권성룡. (2003). 초등학생의 수학적 정당화에 관한 연구. C-초등수학교육, 7(2), 85-99.
  4. 김은미. (2010). 일차함수 문제 해결에서 나타난 일반화 행동과 정당화 유형. 이화여자대학교 석사학위 논문.
  5. 김정하, & 강문봉. (2009). 초등학교 교사들의 수학적 정당화에 대한 연구. 수학교육학연구, 19(3), 371-392.
  6. 김정하. (2010). 초등학생의 수학적 정당화에 관한 연구. 이화여자대학교 박사학위논문.
  7. 김정하. (2011). 초등학생과 중학생들의 수학적 정당화에 대한 인식과 단계에 관한 실태 연구. 한국초등수학교육학회지, 15(2), 417-435.
  8. 나귀수. (1998). 증명의 본질과 지도 실제의 분석 -중학교 기하단원을 중심으로-. 서울대학교 박사학위논문.
  9. 나귀수. (1998). 증명의 수리철학적 분석과 지도 방향 탐색. 대한수학교육학회지, 8(1), 351-364.
  10. 류희찬, & 조완영. (1999). 증명의 필요성 이해와 탐구형 기하 소프트웨어 활용. 대한수학교육학회지. 수학교육학연구, 9(2).
  11. 박귀희, 윤현경, 조지영, 정재훈, & 권오남.(2010). 중학생의 경험적 증명과 연역적 증명에 대한 선호 요인 분석. E-수학교육 논문집, 24(2), 325-344.
  12. 박은조, & 방정숙. (2005). 수학 교사들의 증명에 대한 인식. 한국학교수학회논문집, 8(1), 101-116.
  13. 서지수, 류성림. (2012). 수와 연산, 도형 영역에서 초등 3 학년 학생들의 수학적 정당화 유형에 관한 연구. 한국수학교육학회 학술발표 논문집, 2012(1), 135-149.
  14. 이경언. (2014). Harel 과 Sowder 의 증명스키마에 따른 영재학생들의 수학적 정당화 유형 분석. 교육과학연구, 16(1), 57-80.
  15. 최남광. (2008). 중등수학영재아들이 공간기하과제 해결과정에서 보여주는 정당화 유형과 수학적 표현에 관한 연구. 한국교원대학교 석사학위 논문.
  16. Chazan, D. (1993). High school geometry students’ justification for their views of empirical evidence and mathematical proof. Educational Studies in Mathematics 24(4), 359-387 https://doi.org/10.1007/BF01273371
  17. Dictionary, M. W. (2006). The Merriam-Webster Dictionary. Merriam-Webster, Incorporated
  18. Harel, G., & Sowder, L. (1998). Students' proof schemes: Results from exploratory studies. Research in collegiate mathematics education III, 234-283.
  19. Harel, G. (2002). The Development of Mathematical Induction as a Proof Scheme: A Model for DNR-Based Instruction'23. Learning and teaching number theory: Research in cognition and instruction, 2, 185.
  20. Harel, G., & Sowder, L. (2007). Toward comprehensive perspectives on the learning and teaching of proof. Second handbook of research on mathematics teaching and learning, 2, 805-842.
  21. Heinze, A., & Reiss, K. (2009). Developing argumentation and proof competencies in the mathematics classroom. Teaching and learning proof across the grades: AK-16 Perspective, 203, 191-203.
  22. Healy, L, & Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for Research in Mathematics Education 31, 396-428 https://doi.org/10.2307/749651
  23. Herbst, P. G. (2002). Engaging students in proving: A double bind on the teacher. Journal for Research in Mathematics Education, 176-203.
  24. Housman, D., & Porter, M. (2003). Proof schemes and learning strategies of above-average mathematics students. Educational Studies in Mathematics, 53(2), 139-158. https://doi.org/10.1023/A:1025541416693
  25. Knuth, E., Choppin, J., & Bieda, K. (2009). Middle school students' production of mathematical justifications.
  26. Maher, C. A. (2005). How students structure their investigations and learn mathematics: Insights from a long-term study. The Journal of Mathematical Behavior, 24(1), 1-14. https://doi.org/10.1016/j.jmathb.2004.12.006
  27. NCTM, P. (2000). Standards for school Mathematics. Reston, VA, Author.
  28. Rodriguez, A. V. R. (2006, November). Ways of reasoning and types of proofs that mathematics teachers show in technology-enhanced instruction. In Psychology of Mathematics Education (p. 891).
  29. Sowder, L., & Harel, G. (2003). Case studies of mathematics majors' proof understanding, production, and appreciation. Canadian Journal of Math, Science & Technology Education, 3(2), 251-267. https://doi.org/10.1080/14926150309556563
  30. Sowder, L., & Harel, G. (1998). Types of students' justifications. The Mathematics Teacher, 91(8), 670.