• Title/Summary/Keyword: 갤러킨 유한요소법

Search Result 22, Processing Time 0.029 seconds

Natural Frequency Analysis of Arch by Galerkin's Method (갤러킨법을 이용한 아치의 고유진동해석)

  • Jung, Chan-Woo;Seok, Keun-Yung;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.4
    • /
    • pp.55-61
    • /
    • 2007
  • Recently, with the development of computer, FEM has became the most frequently used numerical analysis method. FEM shows great ability in structures analysis, however, Galerkin's Method is more useful in grasping influence or the tendency of parameter which forms the structure. This paper perform the eigenvalue analysis using Galerkin's Method which is advantageous in grasping the influence and the tendency of parameter which forms the structure and study on the influence of parameter that forms arch on natural frequency response.

  • PDF

The Petrov-Galerkin Natural Element Method : II. Linear Elastostatic Analysis (페트로프-갤러킨 자연요소법 : II. 선형 정탄성 해석)

  • Cho, Jin-Rae;Lee, Hong-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.113-121
    • /
    • 2005
  • In order to resolve a common numerical integration inaccuracy of meshfree methods, we introduce an improved natural clement method called Petrov-Galerkin natural element method(PG-NEM). While Laplace basis function is being taken for the trial shape function, the test shape function in the present method is differently defined such that its support becomes a union of Delaunay triangles. This approach eliminates the inconsistency of tile support of integrand function with the regular integration domain, and which preserves both simplicity and accuracy in the numerical integration. In this paper, the validity of the PG-NEM is verified through the representative benchmark problems in 2-d linear elasticity. For the comparison, we also analyze the problems using the conventional Bubnov-Galerkin natural element method(BG-NEM) and constant strain finite clement method(CS-FEM). From the patch test and assessment on convergence rate, we can confirm the superiority of the proposed meshfree method.

Application of DGFEM to 1D Boussinesq Equation (일차원 Boussinesq 방정식에 대한 불연속 갤러킨 기법의 적용)

  • Lee, Haegyun;Lee, Namjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.470-474
    • /
    • 2016
  • Madsen et al. (2002)이 제안한 일차원 고차 Boussinesq 방정식에 대하여 불연속갤러킨 유한요소법(Discontinuous Galerkin Finite Element Method)을 적용하였다. 연속적인 Boussinesq 방정식에서 각 요소경계에 불연속을 허용할 수 있도록 공간차분하고, 시간방향으로 4차 Runge-Kutta 시간적분법, 각 요소사이에는 Lax-Friedrichs 수치흐름률을 사용하였다. 계산영역의 양쪽에 불필요한 파랑의 반사를 억제하도록 흡수층을 설치하였으며, 영역 내부에서 조파할 수 있도록 하였다. Luth et al.(1994)의 수중잠제 실험에 적용하여 관측값과 잘 일치함을 확인하였다.

  • PDF

Application of Channel Routing Model by Taylor-Galerkin Finite Element Method -Modeling of Flow in Flood- (테일러-갤러킨 유한요소법에 의한 하도추적 모형의 적용 -홍수시 하천 유량 모의-)

  • Lee, Hae-Gyun
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.1
    • /
    • pp.404-410
    • /
    • 2011
  • For the simulation of one-dimensional unsteady flow, the Taylor-Galerkin finite element method was adopted to the discretization of the Saint Venant equation. The model was applied to the backwater problem in a single channel and the flood routing in dendritic channel networks. The numerical solutions were compared with previously published results of finite difference and finite element methods and good agreement was observed. The model solves the continuity and the momentum equations in a sequential manner and this leads to easy implementation. Since the final system of matrix is tri-diagonal with a few additional entry due to channel junctions, the tri-diagonal matrix solution algorithm can be used with minor modification. So it is fast and economical in terms of memory for storing matrices.

Application of Discontinuous Galerkin Method to Shallow Water Equations (천수방정식에 대한 불연속 갤러킨 유한요소법의 적용)

  • Lee, Haegyun;Lee, Nam-Joo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2013.05a
    • /
    • pp.443-444
    • /
    • 2013
  • 빈발하고 있는 대규모 홍수와 자연재해는 정확도가 높은 하천 흐름 수치해석 모델에 대한 관심의 증대로 이어지고 있다. 현재 하천에서 발생하는 일반적인 흐름은 기존에 개발된 여러 형태의 천수방정식을 지배방정식으로 하는 수치기법에 의해 해석되고 있으나, 연속적이지 않은 형태의 흐름을 해석하거나 매우 정확한 해석을 필요로 하는 경우에는 기존의 수치해석기법은 많은 한계를 보여 주고 있다. 본 연구에서는 불연속 갤러킨 기법 기반의 흐름 모델을 개발하고, 이를 이용하여 천이류로 분류되는, 댐 붕괴파, 둔덕위 흐름과 2차원 사류의 모의에 적용하여 기존의 수치해와 잘 일치함을 확인하였다.

  • PDF

Development of meshfree particle Methods (무요소 계산법의 발전과 전개)

  • Lee, Jin-Ho
    • Journal for History of Mathematics
    • /
    • v.18 no.4
    • /
    • pp.49-66
    • /
    • 2005
  • Finite element Methods(FEM) have been the primary computational methodologies in science and engineering computations for more than half centuries. One of the main limitations of the finite element approximations is that they need mesh which is an artificial constraint, and they need remeshing to solve in some special problems. The advantages in meshfree Methods is to develop meshfree interpolant schemes that only depends on particles, so they relieve the burden of remeshing and successive mesh generation. In this paper we describe the development of meshfree particle Methods and introduce the numerical schemes for Smoothed Particle hydrodynamics, meshfree Galerkin Methods and meshfree point collocation mehtods. We discusse the advantages and the shortcomings of these Methods, also we verify the applicability and efficiency of Meshfree Particle Methods.

  • PDF

Simulation of One-Dimensional Transcritical Flow with Discontinuous Galerkin Finite Element Method (불연속 갤러킨 유한요소법을 이용한 1차원 천이류 모의)

  • Lee, Haegyun;Lee, Nam-Joo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.3
    • /
    • pp.428-434
    • /
    • 2013
  • With the increase of the frequency in large-scale floods and natural disasters, the demands for highly accurate numerical river models are also rapidly growing. Generally, flows in rivers are modeled with previously developed and well-established numerical models based on shallow water equations. However, the so-far-developed models reveal a lot of limitations in the analysis of discontinuous flow or flow which needs accurate modeling. In this study, the numerical shallow water model based on the discontinuous Galerkin method was applied to the simulation of one-dimensional transcritical flow, including dam break flows and a flow over a hump. The favorable agreement was observed between numerical solutions and analytical solutions.

Space-Time Finite Element Analysis of Transient Problem (동적 문제의 공간-시간 유한요소해석)

  • Kim, Chi-Kyung;Lim, Hong-Bin
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.201-206
    • /
    • 1993
  • A space-time finite element method was presented for time dependent problem. The method which treat both the space and time unformly were proposed and numerically tested. The weighted residual process was used to formulate a finite element method in a space-time domain based upon continuous Galerkin method. This method leads to a conditional stabie high-order accurate solver.

  • PDF

The Derivation of Error Estimates with Various Shape Functions for Time Integration Using Finite Element Approach (유한요소 기법을 적용한 시간적분법에서 형상함수에 따른 오차추정치 유도)

  • 장인식;맹주원;김동호
    • Computational Structural Engineering
    • /
    • v.11 no.4
    • /
    • pp.187-196
    • /
    • 1998
  • 불연속 갤러킨 정식화에 기초를 둔 시간적분법에 대하여 시간을 변수로 한 유한요소적 접근법을 시도하였다. 단일 형상함수와 두 형상함수 정식화에 대해 각각 선형, 이차 형상함수를 적용하여 모두 네 종류의 시간적분법을 유도하였으며, 각 방법에 대하여 시간시텝의 증가에 따른 변위와 속도의 관계를 나타내는 증폭행렬을 계산하였다. 유도된 방법들의 성능을 평가하기 위하여 부하가 갑자기 변화는 진동 문제를 해석하고 변위의 오차를 비교하였다. 네 가지의 방법에 대하여 국부 오차 추정치를 개발하였으며, 오차 추정치의 정확도를 수치예를 이용하여 평가하였다. 단일 형상함수 정식화에서 이차 형상함수를 이용한 오차 추정치가 실제 국부오차를 잘 나타내었으며 유도된 오차 추정치는 시간간격제어 기법에서 시간간격의 크기를 결정하는 척도로 이용 가능하다.

  • PDF

Dam-Break and Transcritical Flow Simulation of 1D Shallow Water Equations with Discontinuous Galerkin Finite Element Method (불연속 갤러킨 유한요소법을 이용한 1차원 천수방정식의 댐 붕괴류 및 천이류 해석)

  • Yun, Kwang Hee;Lee, Haegyun;Lee, Namjoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1383-1393
    • /
    • 2014
  • Recently, with rapid improvement in computer hardware and theoretical development in the field of computational fluid dynamics, high-order accurate schemes also have been applied in the realm of computational hydraulics. In this study, numerical solutions of 1D shallow water equations are presented with TVD Runge-Kutta discontinuous Galerkin (RKDG) finite element method. The transcritical flows such as dam-break flows due to instant dam failure and transcritical flow with bottom elevation change were studied. As a formulation of approximate Riemann solver, the local Lax-Friedrichs (LLF), Roe, HLL flux schemes were employed and MUSCL slope limiter was used to eliminate unnecessary numerical oscillations. The developed model was applied to 1D dam break and transcritical flow. The results were compared to the exact solutions and experimental data.