• 제목/요약/키워드: (p, q)- integral

검색결과 96건 처리시간 0.023초

ON p-ADIC q-BERNOULLl NUMBERS

  • Kim, Tae-Kyun
    • 대한수학회지
    • /
    • 제37권1호
    • /
    • pp.21-30
    • /
    • 2000
  • We give a proof of the distribution relation for q-Bernoulli polynomials $B_{k}$(x : q) by using q-integral and evaluate the values of p-adic q-L-function.n.

  • PDF

(p, q)-LAPLACE TRANSFORM

  • KIM, YOUNG ROK;RYOO, CHEON SEOUNG
    • Journal of applied mathematics & informatics
    • /
    • 제36권5_6호
    • /
    • pp.505-519
    • /
    • 2018
  • In this paper we define a (p, q)-Laplace transform. By using this definition, we obtain many properties including the linearity, scaling, translation, transform of derivatives, derivative of transforms, transform of integrals and so on. Finally, we solve the differential equation using the (p, q)-Laplace transform.

A NOTE ON THE q-ANALOGUES OF EULER NUMBERS AND POLYNOMIALS

  • Choi, Jong-Sung;Kim, Tae-Kyun;Kim, Young-Hee
    • 호남수학학술지
    • /
    • 제33권4호
    • /
    • pp.529-534
    • /
    • 2011
  • In this paper, we consider the q-analogues of Euler numbers and polynomials using the fermionic p-adic invariant integral on $\mathbb{Z}_p$. From these numbers and polynomials, we derive some interesting identities and properties on the q-analogues of Euler numbers and polynomials.

A NOTE ON THE q-EULER NUMBERS AND POLYNOMIALS WITH WEIGHT (α,ω)

  • Rim, Seog-Hoon;Jeong, Joo-Hee
    • 호남수학학술지
    • /
    • 제34권2호
    • /
    • pp.183-190
    • /
    • 2012
  • The main purpose of this paper is to introduce a new type of $q$-Euler numbers and polynomials with weak weight (${\alpha}$,${\omega}$): $\tilde{E}^{({\alpha},{\omega})}_{n,q}$ and $\tilde{E}^{({\alpha},{\omega})}_{n,q}(x)$, respectively. By using the fermionic $p$-adic $q$-integral on $\mathbb{Z}_p$, we can obtain some results and derive some recurrence identities for the $q$-Euler numbers and polynomials with weak weight (${\alpha}$,${\omega}$).

A RELATION OF GENERALIZED q-ω-EULER NUMBERS AND POLYNOMIALS

  • Park, Min Ji;Kim, Young Rok;Lee, Hui Young
    • Journal of applied mathematics & informatics
    • /
    • 제35권3_4호
    • /
    • pp.413-421
    • /
    • 2017
  • In this paper, we study the generalizations of Euler numbers and polynomials by using the q-extension with p-adic integral on $\mathbb{Z}_p$. We call these: the generalized q-${\omega}$-Euler numbers $E^{({\alpha})}_{n,q,{{\omega}}(a)$ and polynomials $E^{({\alpha})}_{n,q,{\omega}}(x;a)$. We investigate some elementary properties and relations for $E^{({\alpha})}_{n,q,{{\omega}}(a)$ and $E^{({\alpha})}_{n,q,{\omega}}(x;a)$.

NEIGHBORHOOD PROPERTIES FOR CERTAIN p-VALENT ANALYTIC FUNCTIONS ASSOCIATED WITH q - p-VALENT BERNARDI INTEGRAL OPERATOR OF COMPLEX ORDER

  • ALDAWISH, I.;AOUF, M.K.;SEOUDY, T.M.;FRASIN, B.A.
    • Journal of applied mathematics & informatics
    • /
    • 제40권3_4호
    • /
    • pp.753-764
    • /
    • 2022
  • In this paper, we introduce and investigate two new subclasses of p-valent analytic functions of complex order defined by using q-p-valent Bernardi integral operator. Also we obtain coefficient estimates and consequent inclusion relationships involving the (q, m, 𝛿)-neighborhoods of these subclasses.

CERTAIN UNIFIED INTEGRAL FORMULAS INVOLVING THE GENERALIZED MODIFIED k-BESSEL FUNCTION OF FIRST KIND

  • Mondal, Saiful Rahman;Nisar, Kottakkaran Sooppy
    • 대한수학회논문집
    • /
    • 제32권1호
    • /
    • pp.47-53
    • /
    • 2017
  • Generalized integral formulas involving the generalized modified k-Bessel function $J^{b,c,{\gamma},{\lambda}}_{k,{\upsilon}}(z)$ of first kind are expressed in terms generalized Wright functions. Some interesting special cases of the main results are also discussed.

THE ZERO-DISTRIBUTION AND THE ASYMPTOTIC BEHAVIOR OF A FOURIER INTEGRAL

  • Ki, Ha-Seo;Kim, Young-One
    • 대한수학회지
    • /
    • 제44권2호
    • /
    • pp.455-466
    • /
    • 2007
  • The zero-distribution of the Fourier integral $${\int}^{\infty}_{-{\infty}}\;Q(u)e^{p(u)+^{izu}du$$, where P is a polynomial with leading term $-u^{2m}(m\;{\geq}\;1)$ and Q an arbitrary polynomial, is described. To this end, an asymptotic formula for the integral is established by applying the saddle point method.