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(p, q)-LAPLACE TRANSFORM†

YOUNG ROK KIM AND CHEON SEOUNG RYOO∗

Abstract. In this paper we define a (p, q)-Laplace transform. By using
this definition, we obtain many properties including the linearity, scaling,

translation, transform of derivatives, derivative of transforms, transform of
integrals and so on. Finally, we solve the differential equation using the
(p, q)-Laplace transform.
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1. Introduction

Let f(x) be a given function that is defined for all x ≥ 0. The Laplace
transform L of a function f(x) is given by

L {f(t)}(s) =
∫ ∞

0

f(x)e−sxdx,

where s ∈ C, R(s) > 0, R(s) denotes the real part of s. This Laplace transform
plays a very important role in pure and applied analysis, especially in solving
differential equations.

Many authors studied the extended version of the q-version of Laplace trans-
form(see [1, 2, 3, 4, 12] ). Hahn [12] defined the q-analogues of the Laplace
transform Lq by

Lq{f(t)}(s) =
1

1− q

∫ ∞

0

f(x)eq(−st)dqt, (R(s) > 0),
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and

Lq{f(t)}(s) =
1

1− q

∫ ∞

0

f(x)Eq(−qst)dqt, (R(s) > 0),

where the q-analogues of the classical exponential function is defined as:

eq(t) =
∞∑
n=0

tn

(q; q)n
=

1

(t; q)∞
(|t| < 1),

and

Eq(t) =

∞∑
n=0

(−1)nq
n(n−1)

2 tn

(q; q)n
= (t; q)∞ (t ∈ C).

Recently, P. Njionou Sadjang [11] constructed the (p, q)-Laplace transform as-
sociated with the (p, q)-calculus involving (p, q)-exponential, (p, q)-integration,
and (p, q)-differentiation.

For a given function f(t), Sadjang define the (p, q)-Laplace transform by
means of

Lp,q{f(t)}(s) =
∫ ∞

0

f(t)ep−1,q−1(−sqt), s > 0, (1)

and

Lp,q{f(t)}(s) =
∫ ∞

0

f(t)ep,q(−spt), s > 0, (2)

where equation (1) is called the (p, q)-Laplace transform of the first kind, and
equation (2) is called the (p, q)-Laplace transform of the second kind.

In this paper, we reconstruct the definition of (p, q)-Laplace transform by re-
ferring to Hahn’s definition of q-Laplace transform and Sadjang’s (p, q)-Laplace
transform. We demonstrate several properties for the newly defined (p, q)-
Laplace transform based on Equation (1).

2. Basic definitions and miscellaneous results

We introduce the following notations and definitions in [5, 7, 8, 9, 10, 11].
The (p, q)-number is defined by, for any number n,

[n]p,q =
pn − qn

p− q
,

which is a clear generalization of q-number when p approaches 1. That is,
lim
p→1

[n]p,q = [n]q. For n ∈ N, the (p, q)-factorial is defined by [5, 7, 11]

[n]p,q! =
n∏
k=1

[k]p,q, n ≥ 1, [0]p,q! = 1.

We also introduce the so-called (p, q)-binomial coefficients in [7, 9, 10, 11].[
n
k

]
p,q

=
[n]p,q!

[k]p,q![n− k]p,q!
, 0 ≤ k ≤ n, n ∈ N.
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Note that as p→ 1, the (p, q)-binomial coefficients is the q-binomial coefficients.
The following equation is obvious by definition.[

n
k

]
p,q

=

[
n

n− k

]
p,q

.

Definition 2.1 ([9, 11]). Let f be an any function and a be a real number.
Then the (p, q)-integral of f is defined by∫ a

0

f(x)dp,qx = (p− q)
∞∑
k=0

qk

pk+1
f

(
qk

pk+1
a

)
if

∣∣∣∣pq
∣∣∣∣ > 1.

Definition 2.2 ([9, 11]). The improper (p, q)-integral of f(x) on [0,∞] is defined
to be ∫ ∞

0

f(x)dp,qx = (p− q)
∞∑

j=−∞

qj

pj+1
f

(
qj

pj+1
a

)
, 0 <

p

q
< 1,

where f is a function defined on the set of the complex numbers.

Definition 2.3 ([5, 6, 7, 8, 9, 11]). We define the (p, q)-derivative operator of
any function f , also referred to as the Jackson derivative, as follows:

Dp,qf(x) =
f(px)− f(qx)

(p− q)x
, x ̸= 0,

and Dp,qf(0) = f ′(0).

Proposition 2.4 ([6, 7, 9, 11]). This operator Dp,q has the following basic
properties: (i) Derivative of a product

Dp,q(f(x)g(x)) = f(px)Dp,qg(x) + g(qx)Dp,qf(x)

= g(px)Dp,qf(x) + f(qx)Dp,qg(x).

(ii) Derivative of a ratio

Dp,q

(
f(x)

g(x)

)
=
g(qx)Dp,qf(x)− f(qx)Dp,qg(x)

g(px)g(qx)

=
g(px)Dp,qf(x)− f(px)Dp,qg(x)

g(px)g(qx)
.

Proposition 2.5 ([6, 9, 11]). Let F (x) be a (p, q)-antiderivative of f(x) and
F (x) be continuous at x = 0. We get the following equation∫ b

a

f(x)dp,qx = F (b)− F (a), 0 ≤ a < n ≤ ∞.

Corollary 2.6 ([6, 9, 11]). Let f
′
(x) exist in a neighborhood of x = 0 and be

continuous at x = 0. If f
′
(x) denotes the ordinary derivative of f(x), then we

obtain the following equation∫ b

a

Dp,qf(x)dp,qx = f(b)− f(a).
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Proposition 2.7 ([6, 9, 11]). Let f(x) and g(x) be two functions whose ordinary
derivatives exist in a neighborhood of x = 0. If a and b are two real numbers
such that a < b, then we have the following equation∫ b

a

f(px)(Dp,qg(x))dp,qx = f(b)g(b)− f(a)g(a)−
∫ b

a

g(qx)(Dp,qf(x))dp,qx.

Definition 2.8 ([6, 7, 8, 11]). Let z be any complex numbers with |z| < 1.
Then the two forms of (p, q)-exponential functions are defined by

ep,q(z) =

∞∑
n=0

p(
n
2) zn

[n]p,q!
,

Ep,q(z) =

∞∑
n=0

q(
n
2) zn

[n]p,q!
.

The useful relation of two forms of (p, q)-exponential functions was obtained
by

ep,q(z)Ep,q(−z) = 1, Ep,q(z) = ep−1,q−1(z).

Proposition 2.9 ([7, 8, 11]). Let λ be a complex number. Then we have the
following equations

Dp,qep,q(λx) = λep,q(λpx),

Dp,qep−1,q−1(λx) = λep−1,q−1(λqx).

Proposition 2.10 ([7, 11]). Let n be a nonnegative integer. Then we obtain the
following equations

Dn
p,qep,q(λx) = λnp(

n
2)ep,q(λp

nx),

Dn
p,qep−1,q−1(λx) = λnq(

n
2)ep−1,q−1(λqnx).

Using Definition 2.8, we get the following proposition.

Proposition 2.11 ([7, 11]). Let n be a nonnegative integer. Then we get the
following equations

cosp,q(z) =
∞∑
n=0

(−1)np(
2n
2 )

[2n]p,q!
z2n,

sinp,q(z) =
∞∑
n=0

(−1)np(
2n+1

2 )

[2n+ 1]p,q!
z2n+1,

Cosp,q(z) = cosp−1,q−1(z) =
∞∑
n=0

(−1)nq(
2n
2 )

[2n]p,q!
z2n,

Sinp,q(z) = sinp−1,q−1(z) =
∞∑
n=0

(−1)nq(
2n+1

2 )

[2n+ 1]p,q!
z2n+1.



(p, q)-Laplace Transform 509

Using Proposition 2.11, we derive the following proposition.

Proposition 2.12 ([7, 11]). The following relation equations hold true.

cosp,q(z)Cosp,q(z) + sinp,q(z)Sinp,q(z) = 1,

sinp,q(z)Cosp,q(z)− cosp,q(z)Sinp,q(z) = 0.

The (p, q)-analogues of the hyperbolic functions can be defined in the same
way as well-known Taylor expressions using exponential functions.

Proposition 2.13 ([7, 11]). Let n be a nonnegative integer. Then we obtain

coshp,q(z) =
ep,q(z) + ep,q(−z)

2
=

∞∑
n=0

p(
2n
2 )

[2n]p,q!
z2n,

sinhp,q(z) =
ep,q(z)− ep,q(−z)

2
=

∞∑
n=0

p(
2n+1

2 )

[2n+ 1]p,q!
z2n+1,

Coshp,q(z) =
ep−1,q−1(z) + ep−1,q−1(−z)

2
=

∞∑
n=0

q(
2n
2 )

[2n]p,q!
z2n,

Sinhp,q(z) =
ep−1,q−1(z)− ep−1,q−1(−z)

2
=

∞∑
n=0

q(
2n+1

2 )

[2n+ 1]p,q!
z2n+1.

Using Proposition 2.13, we get the following proposition.

Proposition 2.14 ([7, 11]). The following relation equations hold true.

coshp,q(z)Coshp,q(z)− sinhp,q(z)Sinhp,q(z) = 1,

coshp,q(z)Sinhp,q(z)− sinhp,q(z)Coshp,q(z) = 0.

Definition 2.15 ([7, 11]). For any n ∈ N, we propose (p, q)-Gamma function
as

Γp,q(n+ 1) = p
(n−1)(n−2)

2

∫ ∞

0

xn−1ep−1,q−1(−qx)dp,qx.

Using Definition 2.15, we have the following Proposition 2.16 and Lemma
2.17.

Proposition 2.16 ([7, 11]). For any n ∈ N, we have

Γp,q(n+ 1) = [n]p,qΓp,q(n).

Lemma 2.17 ([7, 11]). For any n ∈ N, it follows from equation in Proposition
2.16 that

Γp,q(n+ 1) = [n]p,q!.
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3. Properties of the (p, q)-Laplace Transform

In this section, we introduce the two types of definitions of the (p, q)-version
of Laplace transforms and their properties.

Definition 3.1. For a given function f(t), we define (p, q)-Laplace transform of
the first kind as the function

F (s) = Lp,q{f(t)}(s) =
∫ ∞

0

f(t)ep−1,q−1(−st), s > 0, (3)

and we define (p, q)-Laplace transform of the second kind as the function

F(s) = Lp,q{f(t)}(s) =
∫ ∞

0

f(t)ep,q(−st), s > 0. (4)

Note that our definition of the (p, q)-version of Laplace transforms is different
form that of [11]. Now, we investigate the properties for (p, q)-Laplace transform
of the first kind.

Theorem 3.2. (Linearity) For any two complex numbers α and β, we obtain

Lp,q{αf(t) + βg(t)}(s) = αLp,q{f(t)}(s) + βLp,q{g(t)}(s). (5)

Proof. Using (3) in Definition 3.1, we have

Lp,q{αf(t) + βg(t)}(s)

=

∫ ∞

0

ep−1,q−1(−st)(αf(t) + βg(t))dp,qt

= α

∫ ∞

0

ep−1,q−1(−st)f(t)dp,qt+ β

∫ ∞

0

ep−1,q−1(−st)g(x)dp,qt

= αLp,q{f(t)}(s) + βLp,q{g(t)}(s).

�

Applying the Equation (5), we note that

Lp,q{1}(s) = −q
s

∫ ∞

0

Dp,q

(
ep−1,q−1

(
−s
q
t

))
dp,qt

= −q
s

[
ep−1,q−1

(
−s
q
t

)]∞
0

=
q

s
, s > 0.

Lp,q{t}(s) = − q

ps

∫ ∞

0

(pt)Dp,q

(
ep−1,q−1

(
−s
q
t

))
dp,qt

=
q

ps

∫ ∞

0

ep−1,q−1(−st)dp,qt

=
q2

ps2
, s > 0.
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Hence we have

Lp,q{1 + 5t}(s) = Lp,q{1}(s) + 5Lp,q{t}(s)

=
q

s
+

5q2

ps2
, s > 0.

Theorem 3.3. (Scaling) If α is a non-zero complex number, then the following
formula applies

f(αt) 
p,q
1

α
F
( s
α

)
. (6)

Proof. According to Equation (3) in Definition 3.1, we get

F
( s
α

)
=

∫ ∞

0

ep−1,q−1

(
− s

α
t
)
f(t)dp,qt

= α

∫ ∞

0

ep−1,q−1(−st)f(αt)dp,qt

or

1

α
F
( s
α

)
=

1

α

∫ ∞

0

ep−1,q−1

(
− s

α
t
)
f(t)dp,qt

=

∫ ∞

0

ep−1,q−1(−st)f(αt)dp,qt.

Therefore we obtain

f(αt) 
p,q
1

α
F
( s
α

)
.

�

Theorem 3.4. (Attenuation or Substitution) For a given function f(t), we get

ep−1,q−1(−st+ s0t)ep,q(st)f(t) 
p,q F (s− s0). (7)

Proof. By (3) in Definition 3.1, we have

F (s− s0) =

∫ ∞

0

ep−1,q−1(−(s− s0)t)f(t)dp,qt

=

∫ ∞

0

ep−1,q−1(−st)[ep−1,q−1(−st+ s0t)ep,q(st)f(t)]dp,qt

= Lp,q{ep−1,q−1(−st+ s0t)ep,q(st)f(t)}.

Therefore we get

ep−1,q−1(−st+ s0t)ep,q(st)f(t) 
p,q F (s− s0).

�

Theorem 3.5. (Translation) Consider the function

η(x) =

{
0 if x < 0,
1 if x ≥ 0.
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Hence we have

Lp,q{f(x− x0)}(s) = Lp,q{ep,q(st)ep−1,q−1(−s(t+ x0))f(t)}(s). (8)

Proof. It is clear that f(x) = f(x)η(x) for x ≥ 0. Hence we have

Lp,q{f(x− x0)}(s) =
∫ ∞

x0

ep−1,q−1(−sx)(f(x− x0)η(x− x0))dp,qx.

By putting x− x0 = t, we have

Lp,q{f(x− x0)}(s)

=

∫ ∞

0

ep−1,q−1(−s(t+ x0))f(t)dp,qt

=

∫ ∞

0

ep−1,q−1(−st)ep,q(st)ep−1,q−1(−s(t+ x0))f(t)dp,qt

= Lp,q{ep,q(st)ep−1,q−1(−s(t+ x0))f(t)}(s).

�

Theorem 3.6. (Transform of derivatives) For n ∈ N, we have

Dn
p,qf(x) 
p,q

1

p(
n
2)

( s
pq

)n
F

(
s

pn

)
−
n−1∑
j=0

1

p(
n−1−j

2 )

( s
pq

)n−1−j
Dj
p,qf(0). (9)

Proof. Using Proposition 2.7 and Equation (3) in Definition 3.1, we obtain

Lp,q{Dp,qf(x)}(s)

=

∫ ∞

0

ep−1,q−1(−sx)[Dp,qf(x)]dp,qx

=

[
ep−1,q−1

(
−s
q
x

)
f(x)

]∞
0

−
∫ ∞

0

f(px)Dp,q

(
ep−1,q−1

(
−s
q
x

))
dp,qx

= −f(0) + s

q

∫ ∞

0

f(px)ep−1,q−1(−sx)dp,qx

=
s

pq
F

(
s

p

)
− f(0).

Thus we get

Dp,qf(x) 
p,q
s

pq
F

(
s

p

)
− f(0). (10)

As a consequence, we get

D2
p,qf(x) 
p,q

s

pq
Dp,q

(
F

(
s

p

))
−Dp,qf(0),

G

(
s

p

)
=

∫ ∞

0

ep−1,q−1

(
−s
p
x

)
Dp,qf(x)dp,qx
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=

[
ep−1,q−1

(
− s

pq
x

)
f(x)

]∞
0

−
∫ ∞

0

f(px)Dp,q

(
ep−1,q−1

(
− s

pq
x

))
dp,qx

= −f(0) + s

q

∫ ∞

0

f(p2x)ep−1,q−1(−sx)dp,qx

= −f(0) + s

q
Lp,q{f(p2x)}

=
s

p2q
F

(
s

p2

)
− f(0).

Thus we have

D2
p,qf(x) 
p,q

1

p

s2

p2q2
F

(
s

p2

)
− 1

p

s

q
f(0)−Dp,qf(0),

D3
p,qf(x) 
p,q

1

p3
s3

p3q3
F

(
s

p3

)
− 1

p

s2

p2q2
f(0)− s

pq
Dp,qf(0)−D2

p,qf(0),

...

Therefore we obtain

Dn
p,qf(x) 
p,q

1

p(
n
2)

( s
pq

)n
F

(
s

pn

)
−
n−1∑
j=0

1

p(
n−1−j

2 )

( s
pq

)n−1−j
Dj
p,qf(0).

�

Corollary 3.7. For α is a non-zero complex number, we get

Lp,q{Dp,qf(αx)}(s) =
s

α2pq
F

(
s

αp

)
− 1

α
f(0).

Proof. We can prove the following by referring to proof of the Theorem 3.6.

Lp,q{Dp,qf(αx)}(s)

=
1

α

∫ ∞

0

ep−1,q−1

(
− s

α
x
)
Dp,qf(x)dp,qx

=
1

α

[
ep−1,q−1

(
− s

αp
x

)
f(x)

]∞
0

− 1

α

∫ ∞

0

f(qx)Dp,q

(
ep−1,q−1

(
− s

αp
x

))
dp,qx

= − 1

α
f(0) +

s

α2pq
Lp,q{f(x)}

(
s

αp

)
=

s

α2pq
F

(
s

αp

)
− 1

α
f(0).

�
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Theorem 3.8. (Derivative of transforms) For n ∈ N, we get

Dn
p,q,sF (s) =

∫ ∞

0

(−t)nq(
n−1
2 )ep−1,q−1(−sqnt)f(t)dp,qt. (11)

Proof. Again, let

F (s) =

∫ ∞

0

ep−1,q−1(−st)f(t)dp,qt.

We calculate

Dp,q,sep−1,q−1(−st) = −tep−1,q−1(−sqt),
D2
p,q,sep−1,q−1(−st) = (−t)(−qt)ep−1,q−1(−sq2t),

D3
p,q,sep−1,q−1(−st) = (−t)(−qt)(−q2t)ep−1,q−1(−sq3t),

...

Dn
p,q,sep−1,q−1(−st) = (−t)(−qt)(−q2t) . . . (−qn−1t)ep−1,q−1(−sqnt)

= (−t)nq(
n−1
2 )ep−1,q−1(−sqnt).

Therefore we get

Dn
p,q,sF (s) =

∫ ∞

0

(−t)nq(
n−1
2 )ep−1,q−1(−sqnt)f(t)dp,qt.

�
Theorem 3.9. (Transform of integrals) We have∫ x

0

f(x)dp,qx
p,q
q

s
F (ps). (12)

Proof. Using (3) in Definition 3.1, we get

Lp,q

{∫ x

0

f(x)dp,qx
}
(s)

=

∫ ∞

0

ep−1,q−1(−sx)
(∫ x

0

f(x)dp,qx

)
dp,qx

= −q
s

∫ ∞

0

(∫ x

0

f(x)dp,qx

)
Dp,q

(
ep−1,q−1

(
−s
q
x

))
dp,qx

=
q

s
F (ps).

Therefore we have ∫ x

0

f(x)dp,qx
p,q
q

s
F (ps).

�
Theorem 3.10. (Integral of transforms) We get∫ ∞

s

F (s)dp,qs
p,q q
f(qx)

x
. (13)
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Proof. Using (3) in Definition 3.1, we obtain

Lp,q

{∫ ∞

s

F (s)dp,qs
}

= q

∫ ∞

0

ep−1,q−1(−sx)f(qx)
x

dp,qx

= Lp,q

{
q
f(qx)

x

}
.

Therefore we have ∫ ∞

s

F (s)dp,qs
p,q q
f(qx)

x
.

�

Theorem 3.11. For α > −1, we obtain

Lp,q{tα}(s) =
qα+1

p(
α+1
2 )sα+1

Γp,q(α+ 1). (14)

Proof. Using (3) in Definition 3.1 and Definition 2.15, we obtain

Lp,q{tα}(s) =
qα+1

p(
α+1
2 )sα+1

∫ ∞

0

p(
α+1
2 )t(α+1)−1ep−1,q−1(−qt)dp,qt

=
qα+1

p(
α+1
2 )sα+1

Γp,q(α+ 1).

�

The following theorem is a particular case of Theorem 3.11 when α = n is a
nonnegative integer.

Theorem 3.12. Let n ∈ N0. For s > 0, we have

Lp,q{tn}(s) =
qn+1

p(
n+1
2 )sn+1

[n]p,q!. (15)

Proof. We intend to demonstrate by induction of these results. The result for
n = 0 is clear. For some nonnegative integer n, then we get by using (p, q)-
integration by Proposition 2.7.

Lp,q{tn+1}(s)

=
q[n+ 1]p,q
pn+1s

∫ ∞

0

ep−1,q−1(−st)tndp,qt

=
qn+2

p(
n+2
2 )sn+2

[n+ 1]p,q!.

�
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Theorem 3.13. Let a be a real number. Then we get

Lp,q{ep,q(at)}(s) =
pq

ps− aq
,

aq

ps
< 1, (16)

Lp,q{ep−1,q−1(at)}(s) = 1

s

∞∑
n=0

(
q

p

)(n+1
2 ) (a

s

)n
. (17)

Proof. Using Proposition 2.10, (5), and (15), we have

Lp,q{ep,q(at)}(s) =
∞∑
n=0

anp(
n
2)

[n]p,q!

qn+1

p(
n+1
2 )sn+1

[n]p,q!

=
q

s

∞∑
n=0

(
aq

ps

)n
=

pq

ps− aq
,

and

Lp,q{ep−1,q−1(at)}(s) =
∞∑
n=0

anq(
n
2)

[n]p,q!

qn+1

p(
n+1
2 )sn+1

[n]p,q!

=
1

s

∞∑
n=0

(
q

p

)(n+1
2 ) (a

s

)n
.

�

Theorem 3.14. Let a be a real number. Then we obtain

Lp,q{cosp,q(at)}(s) =
p2qs

(ps)2 + (aq)2
, (18)

Lp,q{sinp,q(at)}(s) =
pq2a

(ps)2 + (aq)2
. (19)

Proof. Using Proposition 2.11, and Equation (3), we have

Lp,q{cosp,q(at)}(s) =
∞∑
n=0

(−1)na2np(
2n
2 )

[2n]p,q!

∫ ∞

0

ep−1,q−1(−st)t2ndp,qt

=
∞∑
n=0

(−1)na2np(
2n
2 )

[2n]p,q!

q2n+1

p(
2n+1

2 )s2n+1
[2n]p,q! =

p2qs

p2s2 + a2q2
,

and

Lp,q{sinp,q(at)}(s) =
∞∑
n=0

(−1)na2n+1p(
2n+1

2 )

[2n+ 1]p,q!

∫ ∞

0

ep−1,q−1(−st)t2n+1dp,qt

=

∞∑
n=0

(−1)na2n+1p(
2n+1

2 )

[2n+ 1]p,q!

q2n+2

p(
2n+2

2 )s2n+2
[2n+ 1]p,q!
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=
q

s

aq

ps

∞∑
n=0

(
−a

2q2

p2s2

)n
=

pq2a

p2s2 + a2q2
.

�

Theorem 3.15. Let a be a real number. Then we get

Lp,q{coshp,q(at)}(s) =
p2qs

(ps)2 − (aq)2
,

aq

ps
< 1, (20)

Lp,q{sinhp,q(at)}(s) =
pq2a

(ps)2 − (aq)2
,

aq

ps
< 1. (21)

Proof. Using Proposition 2.13, and Equation (3), we have

Lp,q{coshp,q(at)}(s)} =
1

2
(Lp,q{ep,q(at)}(s) + Lp,q{ep,q(−at)}(s))

=
p2qs

(ps)2 − (aq)2
,

and

Lp,q{sinhp,q(at)}(s)} =
1

2
(Lp,q{ep,q(at)}(s)− Lp,q{ep,q(−at)}(s))

=
pq2a

(ps)2 − (aq)2
.

�

4. Application of (p, q)-Laplace transform to certain (p, q)-difference
equations

In this section, we solve the differential equation using the (p, q)-Laplace trans-
form. We consider the problem of finding f(t), where f(t) satifies (p, q)-Cauchy
problem

Dp,qf(qt) + cqf(pqt) = 0, f(0) = 1,

where c ∈ C. Applying the (p, q)-Laplace transform of the first kind to (3) and
Corollary 3.7, we obtain

−1

q
f(0) +

s

pq3
Lp,q{f(t)}

(
s

pq

)
+ cqLp,q{f(pqt)}(s) = 0.

Next, using Equation (6) and the initial condition f(0) = 1, we get

−1

q
+

s

pq3
Lp,q{f(t)}

(
s

pq

)
+
c

p
Lp,q{f(t)}

(
s

pq

)
= 0.
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Hence we have

Lp,q{f(t)}
(
s

pq

)
=

pq2

s+ cq3
,

and so

Lp,q{f(t)}(s) =
pq

ps+ cq2
. (22)

It follows that f(t) = ep,q (−cqt).
In addition, the result of approaching q to 1 in Equation (22) is equivalent to

the result of approaching q to 1 in equation (4.48) of [11]. Also, if p → 1, then
we can certainly see that it is the same as the solution of the classic Laplace
transform.

Now, consider the (p, q)-differential equation

Dp,qf(qt)− λqf(pqt) = qep,q(λq
2t) , f(0) = 0.

Applying the (p, q)-Laplace transform of first kind to (3) and Corollary 3.7, it
follows that

Lp,q{Dp,qf(qt)}(s)− λqLp,q{f(pqt)}(s) = Lp,q{qep,q(λq2t)},

−1

q
f(0) +

s

pq3
Lp,q{f(t)}

(
s

pq

)
− λ

p
Lp,q{f(t)}

(
s

pq

)
=

pq2

ps− λq3
.

If you simply look at the equation above, then we get

Lp,q{f(t)}
(
s

pq

)
=

p2q5

(ps− λq3)(s− λq3)
.

Finally, if we replace s with pqs, then we have

Lp,q{f(t)}(s) =
p2q3

(p2s− λq2)(ps− λq2)
. (23)

So, clear f(t) = tep,q(λt). Also, we see that the result of approaching q to 1 in
Equation (23) is equal to approaching q to 1 in the result of equation (4.49) in
[11].
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