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THE ZERO-DISTRIBUTION AND THE ASYMPTOTIC
BEHAVIOR OF A FOURIER INTEGRAL

Haseo K1 AND YOUNG-ONE KiM

ABSTRACT. The zero-distribution of the Fourier integral
o0
/ Q(u)eP(u)-H'zudu’
—_— 00

where P is a polynomial with leading term —u?™ (m > 1) and Q an
arbitrary polynomial, is described. To this end, an asymptotic formula
for the integral is established by applying the saddle point method.

1. Introduction

Concerning the zeros of Fourier integrals, G. Pdlya proved, among many
other things, that all the zeros of the Fourier integral

(1.1) / e RGy (m=1,2,3,...)
— o0

are real {11, 12]. If m = 1, it has no zeros at all, but if m > 1 it has infinitely

many zeros. (See the remark after Theorem A below.) Recently, J. Kamimoto

and the authors proved that all the zeros of (1.1) are simple [7]. This is a special

property of the polynomials —u?, —u?,.... There are other polynomials with

the same property. Pélya proved that all the zeros of

[e o]
/ e~ u' " Faut T bu fizu g, (m=1,2,3,...; a€R; b>0)

are real [12, p.18], and it is known that if m = 1, or if m > 2 and b > 0, then all
the zeros are simple. (See Theorem 3.10 of [5], Theorem 1.1 of [8] and Theorem
2.3 of [9].) N. G. de Bruijn proved that if P(u) is a polynomial with leading
term —u”*™ and P’(iu) has real zeros only, then

00
/ eP(u)+izu du

-
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has real zeros only [3, Theorem 20|, and it can be shown that all the zeros are
simple. (See [7].) For general polynomials one cannot expect the same thing.
For instance, all the zeros of

e 2m :
/ e~ Tutigy  (m=2,3,...)
—oo

are distributed on the line Imz = 1, because (1.1) has real zeros only. Nev-
ertheless, it is natural to expect that if m is a positive integer and P(u) is a
polynomial with leading term —u?™, then the zero-distribution of

/ eP(u)—i—izudu

is asymptotically equivalent to that of (1.1) in a suitable sense, because every
polynomial is asymptotically equivalent to its leading term. The purpose of
this paper is to show that this is in fact the case. The main result is this
theorem.

Theorem A. Let m be a positive integer, P(u) a polynomial whose leading
term is —u®™ and Q(u) an arbitrary polynomial which is not identically equal
to zero. Let the entire function f(z) be defined by

fz) = /_ ” Qu)ef™+ezvgy (2 €C).

Then the following hold:
(1) The order of f(2) is 522=.
(2) For each € > 0 all but a finite number of the zeros of f(z) lie in the set
Tm z| < ¢|Re z|.

(3) If P(—u) = P(u) for all uw € R, then for each € > 0 all but a finite
number of the zeros of f(z) lie in the strip Imz| <e.

(4) If P(—u) = P(u) and Q(—u) = Q(u) for allu € R, then all but a finite
number of the zeros of f(z) are real and simple.

The general properties of entire functions that are needed in our proof of
the results can be found in [2]. If m = 1, then, by a direct calculation, one
can show that f(z) has exactly d zeros, where d is the degree of Q(u) (see
Section 2 of this paper); and if m > 2, then the first assertion implies that the
order of f(z) is not an integer, and hence Hadamard’s factorization theorem
implies that f(z) has infinitely many zeros. Suppose that P(—u) = P(u) and
Q(—u) = Q(u) for all u € R. If m < 2, then it can be shown that the number
of non-real zeros of f(z) does not exceed that of the polynomial Q(iu) (see [3,
p-224], [8, Section 3] and [10, Section 2]); and if m > 3, or m = 2 and Q(iu)
has non-real zeros, then the last assertion of this theorem, de Bruijn’s theorem
[3, Theorem 13] (see also [9, Theorem 2.3]) and Theorem 1.1 of [8] imply that
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there is a real constant A such that
/oo Q(u)eP(u)+>\u2+izudu
— o0

has non-real zeros if and only if A < A. See also [10].

The last assertion of Theorem A is a direct consequence of the third one and
the following theorem [9, Theorem 2.2] which solved a conjecture of de Bruijn
[3, pp.199, 205].

Theorem B. Let F(u) be a complez-valued function defined on the real line;
and suppose that F(u) is integrable,

(1.2) Flu)=0 (e“lulb) (lul — o0, u € R)

for some constant b > 2, and F(—u) = F(u) for all w € R. Suppose also that
for each € > 0 all but a finite number of the zeros of the Fourier integral of
F(u) lie in the strip [Im z| < e. Then for each A > 0 all but a finite number of
the zeros of the Fourier integral of e’ F(u) are real and simple.

Proof that (3) implies (4). Suppose P(—u) = P(u) and Q(—u) = Q(u) for all
u € R. Let A be an arbitrary positive constant and put
F(u) = Qu)eP® =",

We may assume, without loss of generality, that m > 2. Then the function
F(u) satisfies (1.2) with b = 2m — 1 > 2, and it is clear that F(—u) = F(u)
for all u € R. Since Py(u) = P(u) — Au? is a polynomial with leading term
—u?™ and Py(~u) = Py\(u) for all u € R, (3) implies that for each € > 0 all
but a finite number of the zeros of the Fourier integral of F'(u) lie in the strip
|Im z| < e. Hence, by Theorem B, all but a finite number of the zeros of the
Fourier integral of ¥’ F(u) = Q(u)eP™ are real and simple. a

The other assertions of Theorem A will be proved in Section 2. They are con-
sequences of Theorem C stated below which describes the asymptotic behavior
of the function f(z). In order to state the theorem, we need some notation.
Let the polynomial P(u) be given by

P(u) = —u?™ + agp 2™ 4 b ayu + ao.
Suppose that Rez > 0 and write z = re*® with » > 0 and —7/2 < 0 < 7/2.
We put
(1.3) R= (#)ﬁlTl and (= FIRT e THoT
Thus z = ¢(>™~1, and we have
P'(u) +iz = —2mu® Y + (2m — Dagm_1u®™ 2 + - + a7 + ™70

There is a positive constant 7y such that if » > 1, then the equation P’ (u)+iz =
0 has exactly 2m—1 (distinct and simple) roots in the complex u-plane. Suppose
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that r > ) and let u;, j € [-m+1,m —1]NZ, denote the 2m — 1 roots of the
equation P’(u) + iz = 0. By taking r; sufficiently large, we may assume that
these roots are given by

(1.4) uj = (2m)Ftemiot (B¥2) (1 4+ A+ A2+ ),

where the Aji’s are constants independent of z, and the series converge abso-
lutely and uniformly for » > r;. Bach u; is an analytic function of z, which is
defined for r > ry and |#] < w/2. It is clear that for each j we have

(1.5) uj = Rema=1(3+6427) (1 4 O(R™Y))

and
P(uj) +izu; = (2m — Du™ (1+ O (R7Y))

(1.6) = (2m — 1) R2me(5+0tm=1(340+27)) (1 1 O (R7Y))
=(2m - 1)(2m)_272n—72fe%-?2%7ri<'2m (1+ o(¢I™))
for r — 0o and 8] < /2.

Theorem C. Suppose m > 2. Let Q(u) be a monic polynomial of degree d
and f(z) be as in Theorem A. Then, with

_ —d_ =i (1—m+d
and B =i %emm-3! )

we have

f(Z) — A [BeP(uo)+izu0 (1 +0 (R—l))
+BePum-+iunos (140 (R7))] (1] < 7/2, 7 — o),
where R is defined in (1.3).

Several authors applied the saddle point method to obtain asymptotic for-
mulas for the integral (1.1). See, for instance, (1, 4, 6, 13]. Theorem C is also
proved by an application of the saddle point method (Section 3). In fact, we
will prove a more precise formula (see (3.1) in Section 3).

2. Proof of (1), (2) and (3) of Theorem A

If m = 1, that is, if P(u) = —u? 4 au + b for some constants a and b, then
we have f(z) = \/mebQ(—iD)exp (—(z —ia)?/4), D = d/dz, and hence f(z)
has exactly d zeros, where d is the degree of the polynomial QX{u), and it is
clear that f(z) is of order 2. This proves the theorem in the case when m = 1.
From here on, we assume that m > 2. It is enough to prove the assertions in
the right half plane Rez > 0.

If we put

. ™ 1 s .
K(0,5) = (2m — 1) cos <§+6+2m—1 (§+0+2j7r)>,
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then (1.6) implies that
Re (P(uy) +izu;) = R*™ (K(6,7) + O(R™Y)) (18] < 7/2, 1 — o).

Since K(8,m — 1) < K(6,0) for —m/2 < 6 < 0 and K(6,0) < K(8, m — 1) for
0 < 6 < m/2, the first and the second assertions are immediate consequences
of Theorem C.

To prove (3), suppose that P(—u) = P(u) for all real u. We will show the
existence of positive constants 3, C;, Cy and Cs such that 0 < 8 < 1 and
(2.1)

IRe (P(ttm—1) + iztm_1) — Re (P(ug) + izuo)| > Culy| (mm— - 02) o
(x> 1, ly| < Bz),

where £ = Rez and y = Im 2. It is clear that this inequality, Theorem C and
(2) imply (3): Since 8 > 0, (2) implies that all but a finite number of the zeros
of f(z) lie in the set {z : [Imz| < B3|Re z(}; and (2.1) together with Theorem C
imply that for every € > 0 there is a positive constant z; such that f(z) does
not vanish in the set {z:Rez > 21, € < [Imz| < fRez}.

We next prove inequality (2.1). Since P(—u) = P(u) for all real u, the
coefficients agm--1, @2m—3,-..,a; are purely imaginary and the coefficients
Q2m—2,02m—4,-..,a9 are real. If z is real, then the roots of the equation
P'(u) +14z = 0 are symmetrically located with respect to the imaginary axis in
the complex u-plane. In particular —ig = u,,_1 for real z, and we have

P(’u,g) + izug = P(—ﬂo) + iZ(—’ﬁo) = P(um_l) 4+ 12U -1 (Z € R)
Hence, by (1.4), we have

o0 [e.o]
(2.2) P(ug)+izug = ZBkCQm_k and  P(up_1)+iztm_1 = ZBkCQm’k
k=0 k=0

for some constants By, By, Ba, ..., and the series converge absolutely and uni-
formly for r > r;. Thus

Re (P(um~1) + 12um—1) — Re (P(ug) + izug)

(23) =Re Z (B — By) ¢*™F
k=0

=2 (Im BoIm ¢*™ + Im ByIm ¢*™! + -+ + Im Boyr—1Im¢) + O(1)

for r > ry.

From (1.6) and (2.2), we see that Im By > 0. For a constant a, we define
the function A, by

ha(s) = 3 (~1)" <2n“+ 1) s (s < 1)
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If z=x+1y, with 2 > 0 and —xz <y < z, then

m z
There is a constant 3 such that 0 < 8 < 1 and
Sl<8 = |hpm ()<L

Suppose z =z + ¢y, z > 1 and -Gz < y < Bz. Then we have

1
|ImC2m| > Y 1|ylx2ml—1
and
2m — k
Im ¢2mF| < - } E=1,2....2m—1).
[Im ¢ l_|y|(2m_1+|§!u§pﬁh%m___zf(s)> ( ,2, m—1)

From these inequalities and (2.3), we obtain the desired result.

3. Proof of Theorem C

Suppose r > ry and —7/2 < 0 < 7/2. Put z =re¥, J={j € Z:|j| <
m —1} and J* = {0,1,...,m — 1}. Let p; be a positive constant such that
P"(u),Q(u) # 0 for |u| > p1, and let D = {pe'® : p> p1, —7/2 < ¢ < 37/2}.
There is a unique analytic function V(u) defined in D such that

PluV(u)?=-2 (ueD)

and

V(u) = —m(Tlm—Eul_m (1+0(Jul™) (u e D, |ul — o0).
From (1.5), we may assume that u; € D for j € J*. We put

v; = (=1YV(u;) and @;(2) = Vro;Q(u;)ef @I+ (¢ J*).

Each v; is an analytic function of z satisfying

P (u;) 2
B
and
1 1—m i (1-m)o+ (252 +5)m) -1
v, = ———=—R! " Memm1 2 (1+O0(R™))
m(2m — 1)

(16) < 7/2, T — o0).

Each ¢; is an analytic function of z and does not vanish in the region r > r;,

] < /2. Since m > 2, we have 52%+ < 2. Hence (1.6) implies that

In|p,(2)]| =O(r2) (18] < 7/2, 1 — o).
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We will prove that
f(2) =po(2) (1L + O(R™*™))
+ @m-1(2) (1 + O(R_2m)) (18] < w/2, r — 00).

A straightforward calculation shows that this implies Theorem C.
Let j € J* be arbitrary. There is a curve (continuous and piecewise smooth
function) v; : R — C such that v;(0) = u; and

(3.2) P (3(s)) + 12 (5) = Puy) +izu; ~ |s| (s € R).
We must have

Im (P (v;(s)) +1i27;(s)) = Im (P(uy) +1i2u;) (s €R)

(3.1)

and

Jim |y;(s)l = lim |v;(s)| = oo.

We also have

or equivalently

- (ls) —uy)? ]

lim 7 = 5

=0 |y;(s) —usl® vy
We may assume, by replacing ~y;(s) with -y;(—s) if necessary, that
(3.3) lig 00 7Y

s=0+ |95 (s) —u;l vy

If the values Im (P(u;) + izu;), j € J, are all different, then the curves ~;,
j € J*, are uniquely determined by (3.2) and (3.3); and if 6 # (Q—T;nﬂ for all
k € [-m,m —1]NZ, then Im (P(uy) + izu;), j € J, are all different, whenever
7 becomes sufficiently large. Let o be a constant such that 0 < a < -, and
let R = Rl URs U R3, where

Ry = {re® :r>ry, |0 <al},
Ro = {re? :r >, —gg&ﬁ—g—ﬁ—a} and
Rs = {re? :r > rq, g—aﬁﬁig}-

We may assume, by taking r; sufficiently large, that for every z € R the curves
v;, j € JT, are uniquely determined. Using an elementary argument, one can
prove that if ry is sufficiently large, then the following hold:

(1) If z € Ry,

lim 05(8) =ef™/™ and  lim 25(8). = lthmi/m (j€Jh).
s=oo [;(s)] s——c0 [;(s)|
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(2) If z € Rq,
(3) If z € Ra,
m-1(8) m=1(5)

lim =1 and lim = —1.

§—00 l’ym_1(8)| $T 0 |’7m—1(8)l

From here on, we assume the above three statements. Let ¢ be a positive
constant such that 0 < ¢ < -, and put

. T i
sz{pe’¢:p>0, ]—-—egqﬁﬁj———i-e}.
m m
If z € Ry, then there is a positive constant s; such that
§2>s1 = v(s)€S; and s<-—s1 = 7;(s) €511

hold for every j € JT; and since the leading term of P(u) is —u*™ and 0 < € <
7> there are positive constants A and B such that

Qu)ePWHizu) < Ae=BIulP™ (4 SoUS U+ U Sp).

Hence, by Cauchy’s theorem,

m—1

(3.4) fz) = Z / Q(u)ePWrizugy, (z € R1).
§=0 Y

Similarly, we have

(3.5) £(2) = / Qu)eP@+imugy (2 Ry),

Yo
and
(3.6) f(z) = Qu)eP™+izvgy (2 e Ra).
Ym—1

Now, we need a lemma whose proof will be given after the proof of (3.1).
Lemma. For arbitrary j € J* we have
Qe Mgy = ¢ (2) (1 + O (R™*™)) (zeR, r— o0).
Vi
From (3.5), (3.6) and the lemma, we have

_ [ po(@ 1+ O(R™), (0 =-m/2, r—o0)
@7 J=) = { gofn_l((z) 1+ O(R—Z)m)) , (0=m/2, r— ).

If we put

T 1 T
K(8,5) = (2m — T T ;
(8,7) = (2m 1)cos(2+9+2m_1(2—1—0—{-2371)),
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then (1.6) implies that

Re (P(uj) +izu;) = R*™ (K(0,7) + O(R™)) (18] < 7/2, T — o).
We have K(6,j) < min {K(8,0), K(8,m — 1)} for |§] < @ and 1 < j <m —2.
Hence, by (3.4) and the lemma,
F(2) =po(2) (1 + O(R™*™))

+ om-1(2) (1 + O(R_Qm)) (z € Ry, 7 — 00).

Now (3.1) will follow, once we show that
(39) ()= po(e) 1+ OE™™)  (~7/2<6< —a, 1 —00)
and
(3.10) f(2) = om-1(z) (1 + O(R™*™)) (a<8<7/2, r— ),

because K(8,0) > K(6,m — 1) for —7/2 < 0 < 0 and K(6,m — 1) > K(6,0)
for 0 < 8 <m/2.

We prove (3.9) only: (3.10) is proved by the same way. We have |{] =
(2m)Y/m=DR. Hence (3.9) is equivalent to the assertion that the analytic

function

is bounded in the region Ry = {re? : r > r;, —7/2 < 8 < —a}. From (3.7),
ho(z) is bounded on the ray 6 = —7/2, r > rq1. Since K(—a,0) > K(—a,m—1),
(3.8) implies that

f(2) = ¢o(2) (1 + O(R_2m)) #=—a, r— ).

Hence ho(z) is bounded on the ray § = —a, r > r1. Therefore hy(z) is bounded
on the boundary of the region R4. It is known that the order of the entire
function f(z) is at most 23:& (< 2). (For a proof, see [12, pp. 9-10].) Since

ln|po(z)| = O(rz) (18] < 7/2, r — o),

(3.8)

it follows that
ho(2) = O (€CT2> (z € R4, 1 — 0)

for some positive constant C. It is obvious that the two rays § = —7w/2, r > r;
and § = —o, r > 1 make an angle less than #/2. Therefore the Phragmén-
Lindelof theorem [2, p.4] implies that the function hg(z) is bounded throughout
the region R4. This proves (3.9).

Proof of the Lemma. Let j € JT be arbitrary. Put
:lnf{SER ”}/](S>—u‘]‘ SRl-Q%nA and

5
s;’ :sup{s eER:|yi(s) —uyy| < Rl'%ﬁ}.
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We also put a; = v;(s; ) — u; and 8; = v;(s}) — u;. Thus
(u)ep(“)”“du =1+ 1+ Is,

Vi

where

u;+08; )
L :/ Q(u)eP(u)+zzudu,
ujtay
+o0 P )
I = N Q(v;(s))e (71(3))+127j(s)7j’(s)ds, and

N
3

I3 = / ’ Q(Wj(s))el’(w(s))ﬂzw (s)%/(s)ds.
If we put u = u; + w, then
Q(u)eP(u)-‘rizu :Q(uj)eP(uj)+izuj (1 + F(w))
x (1+ G(w) + G(w)*H(w)) P )w* /2,

where
deg @ 2m
. Q(n) (uj) n _ P(n) (uj) n
e 1 — G(w)
H(’U)) = G(w)2 )
and we have P"(u;)/2 = —'vj_z. Hence

Il =Q(uj)ep(uj)+izuj
B _
X / (1+ F(w)) (1+ G(w) + G(w)*H(w)) e *w?
and a straightforward calculation shows that
B; .
/ (1+ F(w)) (1 + G(w) + G(w)?H(w)) e dw
=V (1+O0(R7*™)  (J6] < /2, 1 — o0).

Therefore

Li=pj(z) 1+ O (R*™) (6] <m/2 r— o).

From (3.2), we have

I = e [ © Qe sy (s)eds.
o
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Since 57 > 0, |u; — v;(sF)| = R-* and

Sj = P(uy) +izu; — (P('YJ( ))+1Z’YJ( ))
) (u
- —ZP 2 5t) ),

it follows that
st ~ m(2m — 1)R?™/3 (zeR, T — ).
We may assume, by taking r; sufficiently large, that
Ivi(s) —ugl > 1 (z€R, seR, ke J\{j}).
Then we have
1
' () =15
PO
1 . _ R +
= . — < >s!).
zmlgjhj(s) up] 7 < o (z€R, s235])

In particular,

[v5(s) =

S
uj + o + /+ 5’ (s)ds

K

§— 8 am_, N
<|uj| + lay| + T R (z€R, s>s]).

Now, it is clear that we can find positive constants A and B such that

/ °° QU () (s)e s

< Ae~R” (z € R).

Therefore we have
I = ¢;(2) O (R7*™) (z€R, r— 00),
and the same argument gives
Iy = ¢;(z) O (R7*™) (z€R, r— ).
This proves the lemma. O

Acknowledgment. The authors thank the referee for helpful comments.

References

[1] N. G. Bakhoom, Asymptotic expansions of the function Fi(z)=f;° e_“k‘*’”“du, Proc.
London Math. Soc. 35 (1933), 83-100.

(2] R. P. Boas, Entire Functions, Academic Press, New York, 1954.

[3] N. G. de Bruijn, The roots of trigonometric integrals, Duke Math. J. 17 (1950), 197-226.

[4] W. R. Burwell, Asymptotic expansions of generalized hypergeometric functions, Proc.
London Math. Soc. 22 (1923), 57-72.



466 HASEO KI AND YOUNG-ONE KIM

[6] T. Craven and G. Csordas, Differential operators of infinite order and the distribution
of zeros of entire functions, J. Math. Anal. Appl. 186 (1994), no. 3, 799-820.
[6] J. Kamimoto, On an integral of Hardy and Littlewood, Kyushu J. Math. 52 (1998), no.
1, 249-263.
[7] J. Kamimoto, H. Ki, and Y.-O. Kim, On the multiplicities of the zeros of Laguerre-Pélya
functions, Proc. Amer. Math. Soc. 128 (2000), no. 1, 189-194.
(8] H. Ki and Y.-O. Kim, A generalization of Newman’s result on the zeros of Fourier
transforms, Comput. Methods Funct. Theory 2 (2002), no. 2, 449-467.
[9] , De Bruijn’s question on the zeros of Fourier transforms, J. Anal. Math. 91
(2003), 369-387.
{10] C. M. Newman, Fourier transforms with only real zeros, Proc. Amer. Math. Soc. 61
(1976), no. 2, 245-251.
[11] G. Pélya, On the zeros of an integral function represented by Fourier’s integral, Mes-
senger of Math. 52 (1923), 185-188.
y Uber trigonometrische Integrale mit nur reellen Nullstellen, J. Reine Angew.
Math. 158 (1927), 6-18.
[13] D. Senouf, Asymptotic and numerical approrimations of the zeros of Fourier integrals,
SIAM J. Math. Anal. 27 (1996), no. 4, 1102-1128.

12]

Haseo Ki1

DEPARTMENT OF MATHEMATICS
YoNSEI UNIVERSITY

SEOUL 120-749, KOREA

E-mail address: haseo@yonsei.ac.kr

Young-ONE KiM

DEPARTMENT OF MATHEMATICAL SCIENCES AND RESEARCH INSTITUTE OF MATHEMATICS
SEOUL NATIONAL UNIVERSITY

SEOUL 151-742, KOREA

E-mail address: kimyo@math.snu.ac.kr



