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NEIGHBORHOOD PROPERTIES FOR CERTAIN p−VALENT

ANALYTIC FUNCTIONS ASSOCIATED WITH q − p−VALENT

BERNARDI INTEGRAL OPERATOR OF COMPLEX ORDER

I. ALDAWISH, M.K. AOUF, T.M. SEOUDY AND B.A. FRASIN∗

Abstract. In this paper, we introduce and investigate two new subclasses

of p-valent analytic functions of complex order defined by using q-p-valent
Bernardi integral operator. Also we obtain coefficient estimates and conse-

quent inclusion relationships involving the (q,m, δ)-neighborhoods of these

subclasses.

AMS Mathematics Subject Classification : 65H05, 65F10.
Key words and phrases : Analytic functions, p-valent functions, Bernardi

integral operator, neighborhood.

1. Introduction

Let A (p,m) denote the class of analytic functions of the form:

f(ω) = ωp +

∞∑
k=p+m

ak ωk (p,m ∈ N = {1, 2, ...}) , (1)

which are p-valent in the open unit disc U = {ω ∈ C : |ω| < 1}. We note that
A (p, 1) = A (p), A (1,m) = A (m) and A (1, 1) = A. Also, let T (p,m) denote
the subclass of A (p,m) consisting of analytic and p-valent functions which can
expressed in the form:

f(ω) = ωp −
∞∑

k=p+m

ak ωk (ak > 0; p,m ∈ N) , (2)

with T (p, 1) = T (p), T (1,m) = T (m) and T (1, 1) = T .
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For f ∈ A (p,m) given by (1) and 0 < q < 1, the q−derivative of f (ω) is
given by (see [1],[9],[10],[12],[15], [16],[18], [19],[20],[29],[35],[36] and [38])

Dp,qf (ω) =

{
f(ω)−f(qω)

(1−q)ω for ω ̸= 0,

f ′ (0) for ω = 0,
(3)

provided that f ′ (0) exists. From (1) and (3), we deduce that

Dp,qf(ω) = [p]q ω
p−1 +

∞∑
k=p+m

[k]q ak ωk−1, (4)

where

[k]q =
1− qk

1− q
= 1 + q + ...+ qk−1, [0]q = 0, 0 < q < 1. (5)

We note that

lim
q→1−

Dp,qf(ω) = lim
q→1−

f (ω)− f (qω)

(1− q)ω
= f ′ (ω)

for a function f which is differentiable in a given subset of C. Further, for
p = 1, we have D1,qf(ω) = Dqf(ω) (see [33] and [34]). The q−Jackson definite
integral of the function f (ω) is defined by∫ ω

0

f (t) dqt = ω (1− q)

∞∑
k=0

qkf
(
ωqk

)
, ω ∈ C, (6)

provided that the series converges (see [18] and [19]). For a function f given by
(1), we observe that∫ ω

0

f (t) dqt =
ωp+1

[p+ 1]q
+

∞∑
k=p+m

ak ωk+1

[k + 1]q

and

lim
q→1−

∫ ω

0

f (t) dqt =
ωp+1

p+ 1
+

∞∑
k=p+m

ak ωk+1

k + 1
=

∫ ω

0

f (t) dt,

where
∫ ω

0
f (t) dt is the ordinary integral.

We use the q−Jackson definite integral of the function f (ω) ∈ A (p,m) to
define the q− p−valent Bernardi integral operator Fν,p,q in the following defini-
tion.

Definition 1.1. Let ν be a real number such that ν > −p (p ∈ N). The q −
p−valent Bernardi integral operator Fν,p,q is defined by

Fν,p,q (ω) =
[ν + p]q

ων

∫ ω

0

tν−1f (t) dqt (ν > −p; f (ω) ∈ A (p,m)) . (7)

For a function f given by (1), we have

Fν,p,q (ω) = ωp +

∞∑
k=p+m

[ν + p]q
[ν + k]q

ak ωk (ν > −p; p ∈ N) . (8)
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We note that:

(1) limq→1− Fν,p,q (ω) = Fν,p (ω) (ν > −p), where Fν,p (ω) is the p−valent
Bernardi integral operator (see [31], [32] and [8]);

(2) Fν,1,q (ω) = Fν,q (ω) (see [24]);
(3) limq→1− Fν,1,q (ω) = Fν (ω) (ν > −1) (see [13] and [21]).

By using the operator Fν,p,q (ω) we define the class Sm (ν, p, q, λ, γ, β) as fol-
lows.

Definition 1.2. Let f ∈ T (p,m). Then we say that f ∈ Sm (ν, p, q, λ, γ, β) if
it satisfies the following inequality:∣∣∣∣ 1γ

[
(1− λ)ωDp,q (Fν,p,q (ω)) + λωDp,q (ωDp,q (Fν,p,q (ω)))

(1− λ)Fν,p,q (ω) + λωDp,q (Fν,p,q (ω))
− [p]q

]∣∣∣∣ < β (9)

(ν > −p; γ ∈ C∗ = C\ {0} ; p,m ∈ N; 0 < q < 1; 0 ≤ λ ≤ 1; 0 < β ≤ 1) .

We note that:

(1) limq→1− Sm (ν, p, q, λ, γ, β) = Sm (ν, p, λ, γ, β)

Sm (ν, p, λ, γ, β) =

{
f ∈ T (p,m) :

∣∣∣∣∣ 1γ
[

ωF ′
ν,p (ω) + λω2F ′′

ν,p (ω)

(1− λ)Fν,p (ω) + λωF ′
ν,p (ω)

− p

]∣∣∣∣∣ < β

}

(ν > −p; γ ∈ C∗; p,m ∈ N; 0 ≤ λ ≤ 1; 0 < β ≤ 1) ;

(2) Sm (ν, 1, q, λ, γ, β) = Sm (ν, q, λ, γ, β)

Sm (ν, q, λ, γ, β)

=

{
f ∈ T (m) :

∣∣∣∣ 1γ
[
(1− λ)ωDq (Fν,q (ω)) + λωDq (ωDq (Fν,q (ω)))

(1− λ)Fν,q (ω) + λωDq (Fν,q (ω))
− 1

]∣∣∣∣ < β

}
(ν > −1; γ ∈ C∗;m ∈ N; 0 < q < 1; 0 ≤ λ ≤ 1; 0 < β ≤ 1) ;

(3) limq→1− Sm (ν, 1, q, λ, γ, β) = Sm (ν, λ, γ, β)

Sm (ν, λ, γ, β) =

{
f ∈ T (m) :

∣∣∣∣ 1γ
[

ωF ′
ν (ω) + λω2F ′′

ν (ω)

(1− λ)Fν (ω) + λωF ′
ν (ω)

− 1

]∣∣∣∣ < β

}
(ν > −1; γ ∈ C∗;m ∈ N; 0 ≤ λ ≤ 1; 0 < β ≤ 1) .

Definition 1.3. Let f ∈ T (p,m). Then we say that f ∈ Km (ν, p, q, λ, γ, β) if
it satisfies the following inequality:∣∣∣∣∣ 1γ

[
(1− λ)

Fν,p,q (ω)

ωp
+ λ

Dp,q (Fν,p,q (ω))

[p]q ω
p−1

− 1

]∣∣∣∣∣ < β (10)

(ν > −p; γ ∈ C∗; p,m ∈ N; 0 < q < 1; 0 ≤ λ ≤ 1; 0 < β ≤ 1) .

We note that:
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(1) limq→1− Km (ν, p, q, λ, γ, β) = Km (ν, p, λ, γ, β)

Km (ν, p, λ, γ, β)

=

{
f ∈ T (p,m) :

∣∣∣∣ 1γ
[
(1− λ)

Fν,p (ω)

ωp
+ λ

ωF ′
ν,p (ω)

pωp−1
− 1

]∣∣∣∣ < β

}
(ν > −p; γ ∈ C∗; p,m ∈ N; 0 ≤ λ ≤ 1; 0 < β ≤ 1) ;

(2) Km (ν, 1, q, λ, γ, β) = Km (ν, q, λ, γ, β)

Km (ν, q, λ, γ, β)

=

{
f ∈ T (m) :

∣∣∣∣ 1γ
[
(1− λ)

Fν,q (ω)

ω
+ λDq (Fν,q (ω))− 1

]∣∣∣∣ < β

}
(ν > −1; γ ∈ C∗;m ∈ N; 0 < q < 1; 0 ≤ λ ≤ 1; 0 < β ≤ 1) ;

(3) limq→1− Km (ν, 1, q, λ, γ, β) = Km (ν, λ, γ, β)

Km (ν, λ, γ, β) =

{
f ∈ T (m) :

∣∣∣∣ 1γ
[
(1− λ)

Fν (ω)

ω
+ λωF ′

ν (ω)− 1

]∣∣∣∣ < β

}
(ν > −1; γ ∈ C∗;m ∈ N; 0 ≤ λ ≤ 1; 0 < β ≤ 1) .

Now, following the earlier investigations by Goodman [17], Ruscheweyh [30]
and others including Altintaş and Owa [2, 4], Altintaş et al. [3, 5, 6], Mugrusun-
daramoorthy and Srivastava [23], Riana and Srivastava [28], Prajapat et al. [27]
and Srivastava and Orhan [37] (see also, [11], [14], [22], [25] and [26]), we define
the (m, δ)−neighborhood of a function f ∈ T (p,m) given by (2) as follows:

N p
m,δ (f)

=

g ∈ T (p,m) : g(ω) = ωp −
∞∑

k=p+m

bk ωk and

∞∑
k=p+m

k |ak − bk | ≤ δ

 .

(11)

In particular, if
h (ω) = ωp (p ∈ N) , (12)

we immediately have

N p
m,δ (h) =

g ∈ T (p,m) : g (ω) = ωp −
∞∑

k=p+m

bk ωk and

∞∑
k=p+m

k |bk | ≤ δ

 .

(13)
Now, we define the (q,m, δ)−neighborhood of a function f ∈ T (p,m) given by
(2) as follows (see [7])

N p,q
m,δ (f)

=

g ∈ T (p,m) : g(ω) = ωp −
∞∑

k=p+m

bk ωk and

∞∑
k=p+m

[k]q |ak − bk | ≤ δ

 .

(14)
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In particular, if h (ω) given by (12), we immediately have

N p,q
m,δ (h) =

g ∈ T (p,m) : g (ω) = ωp −
∞∑

k=p+m

bk ωk and

∞∑
k=p+m

[k]q |bk | ≤ δ

 .

(15)
We note that limq→1− N p,q

m,δ (f) = N p
m,δ (f) and limq→1− N p,q

m,δ (h) = N p
m,δ (h)

(see [5]).

2. Coefficient bounds

Unless otherwise mentioned, we shall assume in the reminder of this paper
that γ ∈ C∗, p,m ∈ N, 0 < q < 1, 0 ≤ λ ≤ 1, 0 < β ≤ 1 and ν > −p.

In our present investigation of the inclusion relations involving N p,q
m,δ (h), we

shall require Lemmas 2.1 and 2 below.

Lemma 2.1. Let f ∈ T (p,m) be given by (2). Then f ∈ Sm (ν, p, q, λ, γ, β) if
and only if

∞∑
k=p+m

(
[k]q + β |γ| − [p]q

) [
1 + λ

(
[k]p − 1

)] [ν + p]q
[ν + k]q

ak

≤ β |γ|
[
1 + λ

(
[k]p − 1

)]
.

(16)

Proof. Let f (ω) ∈ Sm (ν, p, q, λ, γ, β). Then we have

ℜ
{
(1− λ)ωDp,q (Fν,p,q (ω)) + λωDp,q (ωDp,q (Fν,p,q (ω)))

(1− λ)Fν,p,q (ω) + λωDp,q (Fν,p,q (ω))
− [p]q

}
> −β |γ| (ω ∈ U),

(17)

or, equivalently,

ℜ


−

∞∑
k=p+m

(
[k]q − [p]q

) [
1 + λ

(
[k]p − 1

)]
[ν+p]q
[ν+k]q

ak ωk−p

[
1 + λ

(
[p]p − 1

)]
−

∞∑
k=p+m

[
1 + λ

(
[k]p − 1

)]
[ν+p]q
[ν+k]q

ak ωk−p

 > −β |γ| .

(18)
Setting ω = r (0 ≤ r < 1) in (18), we observe that the expression in the denomi-
nator of the left hand side of (18) is positive for r = 0 and also for all 0 ≤ r < 1.
Thus, by letting r −→ 1− through real values, (18) leads us to the desired
assertion of Lemma 2.1.

Conversely, by applying the hypothesis (16) and letting |ω| = 1, we find from
(9) that ∣∣∣∣ (1− λ)ωDp,q (Fν,p,q (ω)) + λωDp,q (ωDp,q (Fν,p,q (ω)))

(1− λ)Fν,p,q (ω) + λωDp,q (Fν,p,q (ω))
− [p]q

∣∣∣∣
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=

∣∣∣∣∣∣∣∣
∞∑

k=p+m

(
[k]q − [p]q

) [
1 + λ

(
[k]p − 1

)]
[ν+p]q
[ν+k]q

ak ωk−p

[
1 + λ

(
[p]p − 1

)]
−

∞∑
k=p+m

[
1 + λ

(
[k]p − 1

)]
[ν+p]q
[ν+k]q

ak ωk−p

∣∣∣∣∣∣∣∣
≤

∞∑
k=p+m

(
[k]q − [p]q

) [
1 + λ

(
[k]p − 1

)]
[ν+p]q
[ν+k]q

ak |ω|k−p

[
1 + λ

(
[p]p − 1

)]
−

∞∑
k=p+m

[
1 + λ

(
[k]p − 1

)]
[ν+p]q
[ν+k]q

ak |ω|k−p

≤

∞∑
k=p+m

(
[k]q − [p]q

) [
1 + λ

(
[k]p − 1

)]
[ν+p]q
[ν+k]q

ak[
1 + λ

(
[p]p − 1

)]
−

∞∑
k=p+m

[
1 + λ

(
[k]p − 1

)]
[ν+p]q
[ν+k]q

ak

= β |γ| .

Hence, by the maximum modulus theorem, we have f (ω) ∈ Sm (ν, p, q, λ, γ, β),
which evidently completes the proof of Lemma 2.1. □

Similarly, we can prove the following lemma.

Lemma 2.2. Let f ∈ T (p,m) be given by (2). Then f ∈ Km (ν, p, q, λ, γ, β) if
and only if

∞∑
k=p+m

(
[p]q + λ

(
[k]p − [p]q

)) [ν + p]q
[ν + k]q

ak ≤ β [p]q |γ| . (19)

3. Neighborhoods for the classes Sm (ν, p, q, λ, γ, β) and
Km (ν, p, q, λ, γ, β)

In this section, we determine inclusion relations for each of the classes
Sm (ν, p, q, λ, γ, β) and Km (ν, p, q, λ, γ, β) involving (q,m, δ)−neighborhood de-
fined by (14) and (15).

Theorem 3.1. Let f ∈ T (p,m) be in the class Sm (ν, p, q, λ, γ, β), then

Sm (ν, p, q, λ, γ, β) ⊂ N p,q
m,δ(h), (20)

where h(ω) is given by (12) and the parameter δ is given by

δ =
[p+m]q β |γ|

[
1 + λ

(
[p]q − 1

)]
[ν + p+m]q(

[p+m]q + β |γ| − [p]q

) [
1 + λ

(
[p+m]q − 1

)]
[ν + p]q

(
[p]q > |γ|

)
.

(21)

Proof. Let f(ω) ∈ Sm (ν, p, q, λ, γ, β). Then, by using assertion (16) of Lemma
2.1, we have(

[p+m]q + β |γ| − [p]q

) [
1 + λ

(
[p+m]q − 1

)] [ν + p]q
[ν + p+m]q

∞∑
k=p+m

ak
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≤
∞∑

k=p+m

(
[k]q + β |γ| − [p]q

) [
1 + λ

(
[k]q − 1

)] [ν + p]q
[ν + k]q

ak

≤ β |γ|
[
1 + λ

(
[p]q − 1

)]
, (22)

which readily yields

∞∑
k=p+m

ak ≤
β |γ|

[
1 + λ

(
[p]q − 1

)]
[ν + p+m]q(

[p+m]q + β |γ| − [p]q

) [
1 + λ

(
[p+m]q − 1

)]
[ν + p]q

. (23)

Making use of (16), in conjunction with (23), we obtain[
1 + λ

(
[p+m]q − 1

)] [ν + p]q
[ν + p+m]q

∞∑
k=p+m

[k]q ak

≤ β |γ|
[
1 + λ

(
[p]q − 1

)]
+
(
[p]q − β |γ|

) [
1 + λ

(
[p+m]q − 1

)] [ν + p]q
[ν + p+m]q

∞∑
k=p+m

ak

≤ β |γ|
[
1 + λ

(
[p]q − 1

)]
+

(
[p]q − β |γ|

)
β |γ|

[
1 + λ

(
[p]q − 1

)]
(
[p+m]q + β |γ| − [p]q

)
=

[p+m]q β |γ|
[
1 + λ

(
[p]q − 1

)]
(
[p+m]q + β |γ| − [p]q

) .

Hence

∞∑
k=p+m

[k]q ak ≤
[p+m]q β |γ|

[
1 + λ

(
[p]q − 1

)]
[ν + p+m]q(

[p+m]q + β |γ| − [p]q

) [
1 + λ

(
[p+m]q − 1

)]
[ν + p]q

= δ,

(24)
which, by means of the definition (15), establishes the inclusion (20) asserted by
Theorem 3.1. □

In a similar manner, by applying (19) of Lemma 2.2 instead of (16) of Lemma
2.1 to functions in the class Km (ν, p, q, λ, γ, β), we can prove the following in-
clusion relationship.

Theorem 3.2. Let f ∈ T (p,m) be in the class Km (ν, p, q, λ, γ, β), then

Km (ν, p, q, λ, γ, β) ⊂ N p,q
m,δ(h), (25)

where h(ω) is given by (12) and the parameter δ is given by

δ =
[p+m]q [p]q β |γ| [ν + p+m]q[

[p]q + λ
(
[p+m]q − [p]q

)]
[ν + p]q

. (26)
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4. Neighborhoods for the classes S(α)
m (ν, p, q, λ, γ, β) and

K(α)
m (ν, p, q, λ, γ, β)

In this section, we determine the neighborhood for each of the classes

S(α)
m (ν, p, q, λ, γ, β) and K(α)

m (ν, p, q, λ, γ, β), which we define as follows. A func-

tion f (ω) ∈ T (p,m) is said to be in the class S(α)
m (ν, p, q, λ, γ, β) if there exists

a function ρ (ω) ∈ Sm (ν, p, q, λ, γ, β) such that∣∣∣∣ f(ω)ρ (ω)
− 1

∣∣∣∣ < [p]q − α
(
ω ∈ U; 0 ≤ α < [p]q

)
. (27)

Analogously, a function f(ω) ∈ T (p,m) is said to be in the classK(α)
m (ν, p, q, λ, γ, β),

if there exists a function ρ (ω) ∈ Km (ν, p, q, λ, γ, β) such that the inequality (27)
holds true.

Theorem 4.1. Let f (ω) ∈ T (p,m) be in the class Sm (ν, p, q, λ, γ, β) and

α = [p]q−
δ([p+m]q+β|γ|−[p]q)[1+λ([p+m]q−1)][ν+p]q

[p+m]q{([p+m]q+β|γ|−[p]q)[1+λ([p+m]q−1)][ν+p]q−β|γ|[1+λ([p]q−1)][ν+p+m]q}
,

(28)
then

N p,q
m,δ (h) ⊂ S(α)

m (ν, p, q, λ, γ, β) , (29)

where

δ ≤ [p]q [p+m]q

1−
β |γ|

[
1 + λ

(
[p]q − 1

)]
[ν + p+m]q(

[p+m]q + β |γ| − [p]q

) [
1 + λ

(
[p+m]q − 1

)]
[ν + p]q

 .

(30)

Proof. Assume that f (ω) ∈ N p,q
m,δ (h). We find that from (14) that

∞∑
k=p+m

[k]q |ak − bk| ≤ δ, (31)

which readily implies that

∞∑
k=p+m

|ak − bk| ≤
δ

[p+m]q
. (32)

Next, since ρ (ω) ∈ Sm (ν, p, q, λ, γ, β), by using (23), we have

∞∑
k=p+m

bk ≤
β |γ|

[
1 + λ

(
[p]q − 1

)]
[ν + p+m]q(

[p+m]q + β |γ| − [p]q

) [
1 + λ

(
[p+m]q − 1

)]
[ν + p]q

, (33)
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so that

∣∣∣∣ f(ω)ρ (ω)
− 1

∣∣∣∣ ≤

∞∑
k=p+m

|ak − bk|

1−
∞∑

k=p+m

bk

≤ δ([p+m]q+β|γ|−[p]q)[1+λ([p+m]q−1)][ν+p]q

([p+m]q+β|γ|−[p]q)[1+λ([p+m]q−1)][ν+p]q−β|γ|[1+λ([p]q−1)][ν+p+m]q

= [p]q − α,

provided that α is given by (28). Thus, by the above definition, f (ω) ∈
S(α)
m (ν, p, q, λ, γ, β). This completes the proof of Theorem 4.1. □

The proof of Theorem 4.2 below is similar to the proof of Theorem 4.1, we
omit the details involved.

Theorem 4.2. Let f (ω) ∈ T (p,m) be in the class Km (ν, p, q, λ, γ, β) and

α = [p]q−
δ
[
[p]q + λ

(
[p+m]q − [p]q

)]
[ν + p]q

[p+m]q

{[
[p]q + λ

(
[p+m]q − [p]q

)]
[ν + p]q − β |γ| [p]q [ν + p+m]q

} ,

(34)
then

N p,q
m,δ (h) ⊂ K(α)

m (ν, p, q, λ, γ, β) , (35)

where

δ ≤ [p]q [p+m]q

1−
[p]q β |γ| [ν + p+m]q[

[p]q + λ
(
[p+m]q − [p]q

)]
[ν + p]q

 . (36)

Remark 4.1. Letting q → 1− in Theorems 1, 2, 3 and 4, respectively, we obtain

new results for the classes Sm (ν, p, λ, γ, β), Km (ν, p, λ, γ, β), S(α)
m (ν, p, λ, γ, β)

and K(α)
m (ν, p, λ, γ, β), respectively.

Remark 4.2. Taking p = 1 in Theorems 1, 2, 3 and 4, respectively, we obtain

new results for the classes Sm (ν, q, λ, γ, β), Km (ν, q, λ, γ, β), S(α)
m (ν, q, λ, γ, β)

and K(α)
m (ν, q, λ, γ, β), respectively.

Remark 4.3. Letting q → 1− and taking p = 1 in Theorems 1, 2, 3 and 4,
respectively, we obtain new results for the classes Sm (ν, λ, γ, β), Km (ν, λ, γ, β),

S(α)
m (ν, λ, γ, β) and K(α)

m (ν, λ, γ, β), respectively.
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