DOI QR코드

DOI QR Code

NEIGHBORHOOD PROPERTIES FOR CERTAIN p-VALENT ANALYTIC FUNCTIONS ASSOCIATED WITH q - p-VALENT BERNARDI INTEGRAL OPERATOR OF COMPLEX ORDER

  • ALDAWISH, I. (Mathematics and Statistics Department, College of Science, IMSIU(Imam Mohammad Ibn Saud Islamic University)) ;
  • AOUF, M.K. (Department of Mathematics, Faculty of Science, Mansoura University) ;
  • SEOUDY, T.M. (Department of Mathematics, Faculty of Science, Fayoum University, Department of Mathematics, Jamoum University College, Umm Al-Qura University) ;
  • FRASIN, B.A. (Faculty of Science, Department of Mathematics, Al al-Bayt University)
  • Received : 2021.10.01
  • Accepted : 2022.01.29
  • Published : 2022.05.30

Abstract

In this paper, we introduce and investigate two new subclasses of p-valent analytic functions of complex order defined by using q-p-valent Bernardi integral operator. Also we obtain coefficient estimates and consequent inclusion relationships involving the (q, m, 𝛿)-neighborhoods of these subclasses.

Keywords

References

  1. I. Aldawish, M. Aouf, B. Frasin and Tariq Al-Hawary, New subclass of analytic functions defined by q-analogue of p-valent Noor integral operator, AIMS Mathematics 6 (2021), 10466-10484. https://doi.org/10.3934/math.2021607
  2. O. Altintas and S. Owa, Neighborhood of certain analytic functions with negative coefficient, Internat. J. Math. Math. Sci. 19 (1996), 797-800. https://doi.org/10.1155/S016117129600110X
  3. O. Altintas, O. Ozkan and H.M. Srivastava, Neighborhoods of a class of analytic functions with negative coefficients, Appl. Math. Comput. 13 (2000), 63-67.
  4. O. Altintas, Neighborhoods of certain p-valent analytic functions with negative coefficients, Appl. Math. Comput. 187 (2007), 47-53. https://doi.org/10.1016/j.amc.2006.08.101
  5. O. Altintas, O. Ozkan and H.M. Srivastava, Neighborhoods of a certain family of multivalent functions with negative coefficients, Comput. Math. Appl. 47 (2004), 1667-1672. https://doi.org/10.1016/j.camwa.2004.06.014
  6. O. Altintas, H. Irmak and H.M. Srivastava, Neighborhoods of certain subclasses of multivalently analytic functions defined by using a differential operator, Comput. Math. Appl. 55 (2008), 331-338. https://doi.org/10.1016/j.camwa.2007.03.017
  7. M.K. Aouf, A.O. Mostafa and F.Y. Al-Quhali, Properties for class of β-uniformly univalent functions defined by Salagean type q-difference operator, Int. J. Open Problems Complex Analysis 11 (2019), 1-16.
  8. M.K. Aouf and T.M. Seoudy, Some preserving subordination and superordination of the Liu-Owa integral operator, Complex Anal. Oper. Theory 7 (2013), 275-283. https://doi.org/10.1007/s11785-011-0141-6
  9. M.K. Aouf and T.M. Seoudy, Convolution properties for classes of bounded analytic functions with complex order defined by q-derivative operator, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 113 (2019), 1279-1288. https://doi.org/10.1007/s13398-018-0545-5
  10. M.K. Aouf and T.M. Seoudy, Fekete-Szego problem for certain subclass of analytic functions with complex order defined by q-analogue of Ruscheweyh Operator, Constructive Math. Anal. 3 (2020), 36-44. https://doi.org/10.33205/cma.648478
  11. M.K. Aouf, A. Shamandy, A.O. Mostafa and S.M. Madian, Neighborhood properties for certain p-valent analytic functions associated with complex order, Indian J. Math. 52 (2010), 491-506.
  12. A. Aral, V. Gupta, and R.P. Agarwal, Applications of q-Calculus in Operator Theory, Springer, New York, NY, USA, 2013.
  13. S.D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429-446. https://doi.org/10.2307/1995025
  14. B.A. Frasin, Neighborhood of certain multivalent functions with negative coefficients, Appl. Math. Comput. 193 (2007), 1-6. https://doi.org/10.1016/j.amc.2007.03.026
  15. B.A. Frasin, N. Ravikumar and S. Latha, A subordination result and integral mean for a class of analytic functions defined by q-differintegral operator, Ital. J. Pure Appl. Math. 45 (2021), 268-277.
  16. B. Ahmad, M.G. Khan, B.A. Frasin, M.K. Aouf, T. Abdeljawad, W.K. Mashwani and M. Arif, On q-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain, AIMS Mathematics 6 (2021), 3037-3052. https://doi.org/10.3934/math.2021185
  17. A.W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc. 8 (1957), 598-601. https://doi.org/10.1090/S0002-9939-1957-0086879-9
  18. F.H. Jackson, On q-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh 46 (1908), 25-281.
  19. F.H. Jackson, On q-definite integrals, Quarterly J. Pure Appl. Math. 41 (1910), 193-203.
  20. V.G. Kac and P. Cheung, Quantum Calculus, Universitext, Springer-Verlag, New York, 2002.
  21. R.J. Libera, Some radius of convexity problems, Duke Math. J. 31 (1964), 143-158. https://doi.org/10.1215/S0012-7094-64-03114-X
  22. A.O. Mostafa and M.K. Aouf, Neighborhoods of certain p-valent analytic functions with complex order, Comp. Math. Appl. 58 (2009), 1183-1189. https://doi.org/10.1016/j.camwa.2008.10.101
  23. G. Murugusundaramoorthy and H.M. Srivastava, Neighborhoods of certain classes of analytic functions of complex order, J. Inequal. Pure Appl. Math. 5 (2004), 1-8.
  24. K.I. Noor, S. Riazi and M.A. Noor, On q-Bernardi integral operator, TWMS J. Pure Appl. Math. 8 (2017), 3-11.
  25. H. Orhan and E. Kadioglu, Neighborhoods of a class of analytic functions with negative coefficients, Tamsui Oxford J. Math. Sci. 20 (2004), 135-142.
  26. H. Orhan and M. Kamali, Neighborhoods of a class of analytic functions with negative coefficients, Acta Math. Acad. Paedagog. Nyhazi. 21 (2005), 55-61.
  27. J.K. Prajapat, R.K. Raina and H.M. Srivastava, Inclusion and Neighborhood properties for certain classes of multivalently analytic functions associated with the convolution structure, J. Inequal. Pure Appl. Math. 8 (2007), 1-8.
  28. R.K. Raina and H.M. Srivastava, Inclusion and neighborhood properties of some analytic and multivalent functions, J. Inequal. Pure Appl. Math. 7 (2006), 1-6.
  29. C. Ramachandran, S.Annamalai and B.A. Frasin, The q-difference operator associated with the multivalent function bounded by conical sections, Bol. Soc. Paran. Mat. v. 39 (2021), 133-146.
  30. St. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81 (1981), 521-527. https://doi.org/10.1090/S0002-9939-1981-0601721-6
  31. H. Saitoh, On certain class of multivalent functions, Math. Japon. 37 (1992), 871-875.
  32. H. Saitoh, S. Owa, T. Sekine, M. Nunokawa and R. Yamakawa, An application of certain integral operator, Appl. Math. Lett. 5 (1992), 21-24.
  33. T.M. Seoudy and M.K. Aouf, Convolution properties for certain classes of analytic functions defined by q-derivative operator, Abstr. Appl. Anal. 2014 (2014), 1-7.
  34. T.M. Seoudy and M.K. Aouf, Coefficient estimates of new classes of q-starlike and q-convex functions of complex order, J. Math. Inequal. 10 (2016), 135-145.
  35. T.M. Seoudy and A.E. Shammaky, Certain subclasses of spiral-like functions associated with q-analogue of Carlson-Shaffer operator, AIMS Mathematics 6 (2021), 2525-2538. https://doi.org/10.3934/math.2021153
  36. T.M. Seoudy and A.E. Shammaky, Some properties for certain subclasses of multivalent functions associated with the q-difference linear operator, Afrika Mat. 32 (2021), 773-787. https://doi.org/10.1007/s13370-020-00860-8
  37. H.M. Srivastava and H. Orhan, Coefficient inequalities and inclusion some families of analytic and multivalent functions, Appl. Math. Letters 20 (2007), 686-691. https://doi.org/10.1016/j.aml.2006.07.009
  38. H.M. Srivastava, T.M. Seoudy and M.K. Aouf, A generalized conic domain and its applications to certain subclasses of multivalent functions associated with the basic(or q-) calculus, AIMS Math. 6 (2021), 6580-6602. https://doi.org/10.3934/math.2021388