Vacuum-assisted thermoforming is one of the critical steps for successful application of film insert molding (FIM) to make parts of complex shape. If the thickness distribution of the formed film is non-uniform, then cracking, deformation, warpage, and wrinkling can easily occur at the injection molding stage. In this study, the simulation of thermoforming was performed to predict the film thickness distribution, and the results were compared with experiments. Uniaxial tensile tests with a constant crosshead speed for various high temperatures were conducted to investigate the stress-strain behavior. An instance of yielding occurred at the film temperature of $90^{\circ}C$, and the film stiffness increased with increasing crosshead speed. Two types of viscoelastic models, G'Sell model, K-BKZ model, were used to describe the measured stress-strain relationship. The predicted film thickness distributions were in good agreement with the experimental results.