The strain aging behavior of a low carbon dual phase steel was examined in two conditions: representing room temperature strain aging (100 ℃ × 1 hr after 7.5 % prestrain) and bake hardening process (170 ℃ × 20 min after 2 % prestrain), basing on carbon effective diffusion and dislocation distribution. The first principle calculations revealed that (Mn or Cr)-vacancy-C complexes exhibit the strongest attractive interaction compared to other complexes, therefore, act as strong trapping sites for carbon. For room temperature strain aging condition, the carbon effective diffusion distance is smaller than the dislocation distance in the high dislocation density region near ferrite/martensite interfaces as well as ferrite interior considering the carbon trapping effect of the (Mn or Cr)-vacancy-C complexes, implying ineffective Cottrell atmosphere formation. Under bake hardening condition, the carbon effective diffusion distance is larger compared to the dislocation distance in both regions. Therefore, formation of the Cottrell atmosphere is relatively easy resulting in to a relatively large increase in yield strength under bake hardening condition.