Due to a recent growth of the area of MEMS and a trend moving toward smaller scale, a micro manufacturing that is usually related with lithography is now emerging. Differently from traditional manufacturing processes, the micro or miniature manufacturing usually requires expensive sophisticated equipments and its characteristics are of high cost and of low productivity. However, a miniature stamping, which makes small sized product with a thin metal usually in the range of meso-scale, can be realized in a low cost and in a high productivity with relatively inexpensive equipments. For a successful development of miniature stamping, lots of obstacles, including material properties related with formability, have to be overcome. Since the thin metal shows distinctive characteristics, e.g., size effect and statistically scattered material properties, the formability of miniature stamping is not good in general and the possible shape with the miniature stamping is limited relatively simple shapes. Since the optimal blank improves formability and the improved formability can make up for problems of material properties, the possibility of success can be increased. This study is carried out to show the possibility of miniature stamping and to verify the effect of optimal blank for the miniature stamping.